亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multimodal Large Language Models (MLLMs) demonstrate impressive image understanding and generating capabilities. However, existing benchmarks employ limited charts that deviate from real-world scenarios, posing challenges in accurately assessing the chart comprehension of MLLMs. To overcome this constraint, we propose ChartBench, an exhaustive chart benchmark specifically designed to evaluate MLLMs' chart comprehension and data reliability through complex visual reasoning. ChartBench encompasses a wide spectrum, including 42 categories, 2.1K charts, and 16.8K question-answer pairs. Diverging from previous benchmarks, ChartBench avoids employing data point annotation charts or metadata prompts directly. Instead, it compels MLLMs to derive values akin to human understanding by leveraging inherent chart elements such as color, legends, or coordinate systems. Additionally, we propose an enhanced evaluation metric, Acc+, which facilitates the evaluation of MLLMs without needing labor-intensive manual efforts or costly evaluations based on GPT. Our extensive experimental evaluation involves 12 widely-used open-sourced and 2 proprietary MLLMs, revealing the limitations of MLLMs in interpreting charts and providing valuable insights to encourage closer scrutiny of this aspect.

相關內容

High Dynamic Range (HDR) imaging aims to generate an artifact-free HDR image with realistic details by fusing multi-exposure Low Dynamic Range (LDR) images. Caused by large motion and severe under-/over-exposure among input LDR images, HDR imaging suffers from ghosting artifacts and fusion distortions. To address these critical issues, we propose an HDR Transformer Deformation Convolution (HDRTransDC) network to generate high-quality HDR images, which consists of the Transformer Deformable Convolution Alignment Module (TDCAM) and the Dynamic Weight Fusion Block (DWFB). To solve the ghosting artifacts, the proposed TDCAM extracts long-distance content similar to the reference feature in the entire non-reference features, which can accurately remove misalignment and fill the content occluded by moving objects. For the purpose of eliminating fusion distortions, we propose DWFB to spatially adaptively select useful information across frames to effectively fuse multi-exposed features. Extensive experiments show that our method quantitatively and qualitatively achieves state-of-the-art performance.

The rapid advancement of Large Language Models (LLMs) has significantly enhanced the capabilities of text generators. With the potential for misuse escalating, the importance of discerning whether texts are human-authored or generated by LLMs has become paramount. Several preceding studies have ventured to address this challenge by employing binary classifiers to differentiate between human-written and LLM-generated text. Nevertheless, the reliability of these classifiers has been subject to question. Given that consequential decisions may hinge on the outcome of such classification, it is imperative that text source detection is of high caliber. In light of this, the present paper introduces DeepTextMark, a deep learning-driven text watermarking methodology devised for text source identification. By leveraging Word2Vec and Sentence Encoding for watermark insertion, alongside a transformer-based classifier for watermark detection, DeepTextMark epitomizes a blend of blindness, robustness, imperceptibility, and reliability. As elaborated within the paper, these attributes are crucial for universal text source detection, with a particular emphasis in this paper on text produced by LLMs. DeepTextMark offers a viable "add-on" solution to prevailing text generation frameworks, requiring no direct access or alterations to the underlying text generation mechanism. Experimental evaluations underscore the high imperceptibility, elevated detection accuracy, augmented robustness, reliability, and swift execution of DeepTextMark.

Acquiring the desired font for various design tasks can be challenging and requires professional typographic knowledge. While previous font retrieval or generation works have alleviated some of these difficulties, they often lack support for multiple languages and semantic attributes beyond the training data domains. To solve this problem, we present FontCLIP: a model that connects the semantic understanding of a large vision-language model with typographical knowledge. We integrate typography-specific knowledge into the comprehensive vision-language knowledge of a pretrained CLIP model through a novel finetuning approach. We propose to use a compound descriptive prompt that encapsulates adaptively sampled attributes from a font attribute dataset focusing on Roman alphabet characters. FontCLIP's semantic typographic latent space demonstrates two unprecedented generalization abilities. First, FontCLIP generalizes to different languages including Chinese, Japanese, and Korean (CJK), capturing the typographical features of fonts across different languages, even though it was only finetuned using fonts of Roman characters. Second, FontCLIP can recognize the semantic attributes that are not presented in the training data. FontCLIP's dual-modality and generalization abilities enable multilingual and cross-lingual font retrieval and letter shape optimization, reducing the burden of obtaining desired fonts.

We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs, including real-world in-the-wild captures and images created by generative models. Video demos and interactable 3D meshes can be found on our LRM project webpage: //yiconghong.me/LRM.

We introduce a novel 3D generative method, Generative 3D Reconstruction (G3DR) in ImageNet, capable of generating diverse and high-quality 3D objects from single images, addressing the limitations of existing methods. At the heart of our framework is a novel depth regularization technique that enables the generation of scenes with high-geometric fidelity. G3DR also leverages a pretrained language-vision model, such as CLIP, to enable reconstruction in novel views and improve the visual realism of generations. Additionally, G3DR designs a simple but effective sampling procedure to further improve the quality of generations. G3DR offers diverse and efficient 3D asset generation based on class or text conditioning. Despite its simplicity, G3DR is able to beat state-of-theart methods, improving over them by up to 22% in perceptual metrics and 90% in geometry scores, while needing only half of the training time. Code is available at //github.com/preddy5/G3DR

Vehicle detection in Unmanned Aerial Vehicle (UAV) captured images has wide applications in aerial photography and remote sensing. There are many public benchmark datasets proposed for the vehicle detection and tracking in UAV images. Recent studies show that adding an adversarial patch on objects can fool the well-trained deep neural networks based object detectors, posing security concerns to the downstream tasks. However, the current public UAV datasets might ignore the diverse altitudes, vehicle attributes, fine-grained instance-level annotation in mostly side view with blurred vehicle roof, so none of them is good to study the adversarial patch based vehicle detection attack problem. In this paper, we propose a new dataset named EVD4UAV as an altitude-sensitive benchmark to evade vehicle detection in UAV with 6,284 images and 90,886 fine-grained annotated vehicles. The EVD4UAV dataset has diverse altitudes (50m, 70m, 90m), vehicle attributes (color, type), fine-grained annotation (horizontal and rotated bounding boxes, instance-level mask) in top view with clear vehicle roof. One white-box and two black-box patch based attack methods are implemented to attack three classic deep neural networks based object detectors on EVD4UAV. The experimental results show that these representative attack methods could not achieve the robust altitude-insensitive attack performance.

We present SplattingAvatar, a hybrid 3D representation of photorealistic human avatars with Gaussian Splatting embedded on a triangle mesh, which renders over 300 FPS on a modern GPU and 30 FPS on a mobile device. We disentangle the motion and appearance of a virtual human with explicit mesh geometry and implicit appearance modeling with Gaussian Splatting. The Gaussians are defined by barycentric coordinates and displacement on a triangle mesh as Phong surfaces. We extend lifted optimization to simultaneously optimize the parameters of the Gaussians while walking on the triangle mesh. SplattingAvatar is a hybrid representation of virtual humans where the mesh represents low-frequency motion and surface deformation, while the Gaussians take over the high-frequency geometry and detailed appearance. Unlike existing deformation methods that rely on an MLP-based linear blend skinning (LBS) field for motion, we control the rotation and translation of the Gaussians directly by mesh, which empowers its compatibility with various animation techniques, e.g., skeletal animation, blend shapes, and mesh editing. Trainable from monocular videos for both full-body and head avatars, SplattingAvatar shows state-of-the-art rendering quality across multiple datasets.

Traffic prediction is one of the most significant foundations in Intelligent Transportation Systems (ITS). Traditional traffic prediction methods rely only on historical traffic data to predict traffic trends and face two main challenges. 1) insensitivity to unusual events. 2) limited performance in long-term prediction. In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation, and name the task Text-to-Traffic Generation (TTG). The key challenge of the TTG task is how to associate text with the spatial structure of the road network and traffic data for generating traffic situations. To this end, we propose ChatTraffic, the first diffusion model for text-to-traffic generation. To guarantee the consistency between synthetic and real data, we augment a diffusion model with the Graph Convolutional Network (GCN) to extract spatial correlations of traffic data. In addition, we construct a large dataset containing text-traffic pairs for the TTG task. We benchmarked our model qualitatively and quantitatively on the released dataset. The experimental results indicate that ChatTraffic can generate realistic traffic situations from the text. Our code and dataset are available at //github.com/ChyaZhang/ChatTraffic.

Action Quality Assessment (AQA) evaluates diverse skills but models struggle with non-stationary data. We propose Continual AQA (CAQA) to refine models using sparse new data. Feature replay preserves memory without storing raw inputs. However, the misalignment between static old features and the dynamically changing feature manifold causes severe catastrophic forgetting. To address this novel problem, we propose Manifold-Aligned Graph Regularization (MAGR), which first aligns deviated old features to the current feature manifold, ensuring representation consistency. It then constructs a graph jointly arranging old and new features aligned with quality scores. Experiments show MAGR outperforms recent strong baselines with up to 6.56%, 5.66%, 15.64%, and 9.05% correlation gains on the MTL-AQA, FineDiving, UNLV-Dive, and JDM-MSA split datasets, respectively. This validates MAGR for continual assessment challenges arising from non-stationary skill variations.

《FlowQA: Grasping Flow in History for Conversational Machine Comprehension.》Hsin-YuanHuang, Eunsol Choi,Wen-tauYih [ICLR] (2019)

會話機器理解需要對會話歷史有深刻的理解,為了使傳統的單圈模型能夠進行全面編碼,作者引入Flow機制,該機制可以通過交替并行處理結構合并在回答先前問題的過程中生成的中間表示。與先前的將問題/答案作為輸入的方法相比,Flow更深入地整合了歷史對話的潛在語義。其性能也優于SCONE中的所有三個領域中的最佳模型,準確性提高了2.6%

Github項目地址://github.com/momohuang/FlowQA

付費5元查看完整內容
北京阿比特科技有限公司