亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by an application from geodesy, we introduce a novel clustering problem which is a $k$-center (or k-diameter) problem with a side constraint. For the side constraint, we are given an undirected connectivity graph $G$ on the input points, and a clustering is now only feasible if every cluster induces a connected subgraph in $G$. We call the resulting problems the connected $k$-center problem and the connected $k$-diameter problem. We prove several results on the complexity and approximability of these problems. Our main result is an $O(\log^2{k})$-approximation algorithm for the connected $k$-center and the connected $k$-diameter problem. For Euclidean metrics and metrics with constant doubling dimension, the approximation factor of this algorithm improves to $O(1)$. We also consider the special cases that the connectivity graph is a line or a tree. For the line we give optimal polynomial-time algorithms and for the case that the connectivity graph is a tree, we either give an optimal polynomial-time algorithm or a $2$-approximation algorithm for all variants of our model. We complement our upper bounds by several lower bounds.

相關內容

We present a finite element discretisation to model the interaction between a poroelastic structure and an elastic medium. The consolidation problem considers fully coupled deformations across an interface, ensuring continuity of displacement and total traction, as well as no-flux for the fluid phase. Our formulation of the poroelasticity equations incorporates displacement, fluid pressure, and total pressure, while the elasticity equations adopt a displacement-pressure formulation. Notably, the transmission conditions at the interface are enforced without the need for Lagrange multipliers. We demonstrate the stability and convergence of the divergence-conforming finite element method across various polynomial degrees. The a priori error bounds remain robust, even when considering large variations in intricate model parameters such as Lam\'e constants, permeability, and storativity coefficient. To enhance computational efficiency and reliability, we develop residual-based a posteriori error estimators that are independent of the aforementioned coefficients. Additionally, we devise parameter-robust and optimal block diagonal preconditioners. Through numerical examples, including adaptive scenarios, we illustrate the scheme's properties such as convergence and parameter robustness.

Minimizing the weight of an edge set satisfying parity constraints is a challenging branch of combinatorial optimization as witnessed by the binary hypergraph chapter of Alexander Schrijver's book ``Combinatorial Optimization" (Chapter 80). This area contains relevant graph theory problems including open cases of the Max Cut problem and some multiflow problems. We clarify the interconnections between some of these problems and establish three levels of difficulties. On the one hand, we prove that the Shortest Odd Path problem in undirected graphs without cycles of negative total weight and several related problems are NP-hard, settling a long-standing open question asked by Lov\'asz (Open Problem 27 in Schrijver's book ``Combinatorial Optimization''). On the other hand, we provide an efficient algorithm to the closely related and well-studied Minimum-weight Odd $T$-Join problem for non-negative weights: our algorithm runs in FPT time parameterized by $c$, where $c$ is the number of connected components in some efficiently computed minimum-weight $T$-join. If negative weights are also allowed, then finding a minimum-weight odd $\{s,t\}$-join is equivalent to the Minimum-weight Odd $T$-Join problem for arbitrary weights, whose complexity is still only conjectured to be polynomial-time solvable. The analogous problems for digraphs are also considered.

Consider a two-person zero-sum search game between a Hider and a Searcher. The Hider chooses to hide in one of $n$ discrete locations (or "boxes") and the Searcher chooses a search sequence specifying which order to look in these boxes until finding the Hider. A search at box $i$ takes $t_i$ time units and finds the Hider - if hidden there - independently with probability $q_i$, for $i=1,\ldots,n$. The Searcher wants to minimize the expected total time needed to find the Hider, while the Hider wants to maximize it. It is shown in the literature that the Searcher has an optimal search strategy that mixes up to $n$ distinct search sequences with appropriate probabilities. This paper investigates the existence of optimal pure strategies for the Searcher - a single deterministic search sequence that achieves the optimal expected total search time regardless of where the Hider hides. We identify several cases in which the Searcher has an optimal pure strategy, and several cases in which such optimal pure strategy does not exist. An optimal pure search strategy has significant practical value because the Searcher does not need to randomize their actions and will avoid second guessing themselves if the chosen search sequence from an optimal mixed strategy does not turn out well.

Two simple undirected graphs are cospectral if their respective adjacency matrices have the same multiset of eigenvalues. Cospectrality yields an equivalence relation on the family of graphs which is provably weaker than isomorphism. In this paper, we study cospectrality in relation to another well-studied relaxation of isomorphism, namely $k$-dimensional Weisfeiler-Leman ($k$-WL) indistinguishability. Cospectrality with respect to standard graph matrices such as the adjacency or the Laplacian matrix yields a strictly finer equivalence relation than $2$-WL indistinguishability. We show that individualising one vertex plus running $1$-WL already subsumes cospectrality with respect to all such graph matrices. Building on this result, we resolve an open problem of F\"urer (2010) about spectral invariants. Looking beyond $2$-WL, we devise a hierarchy of graph matrices generalising the adjacency matrix such that $k$-WL indistinguishability after a fixed number of iterations can be captured as a spectral condition on these matrices. Precisely, we provide a spectral characterisation of $k$-WL indistinguishability after $d$ iterations, for $k,d \in \mathbb{N}$. Our results can be viewed as characterisations of homomorphism indistinguishability over certain graph classes in terms of matrix equations. The study of homomorphism indistinguishability is an emerging field, to which we contribute by extending the algebraic framework of Man\v{c}inska and Roberson (2020) and Grohe et al. (2022).

In a simple connected graph $G=(V,E)$, a subset of vertices $S \subseteq V$ is a dominating set if any vertex $v \in V\setminus S$ is adjacent to some vertex $x$ from this subset. A number of real-life problems can be modeled using this problem which is known to be among the difficult NP-hard problems in its class. We formulate the problem as an integer liner program (ILP) and compare the performance with the two earlier existing exact state-of-the-art algorithms and exact implicit enumeration and heuristic algorithms that we propose here. Our exact algorithm was able to find optimal solutions much faster than ILP and the above two exact algorithms for middle-dense instances. For graphs with a considerable size, our heuristic algorithm was much faster than both, ILP and our exact algorithm. It found an optimal solution for more than half of the tested instances, whereas it improved the earlier known state-of-the-art solutions for almost all the tested benchmark instances. Among the instances where the optimum was not found, it gave an average approximation error of $1.18$.

This paper presents two efficient hierarchical clustering (HC) algorithms with respect to Dasgupta's cost function. For any input graph $G$ with a clear cluster-structure, our designed algorithms run in nearly-linear time in the input size of $G$, and return an $O(1)$-approximate HC tree with respect to Dasgupta's cost function. We compare the performance of our algorithm against the previous state-of-the-art on synthetic and real-world datasets and show that our designed algorithm produces comparable or better HC trees with much lower running time.

The problem Power Dominating Set (PDS) is motivated by the placement of phasor measurement units to monitor electrical networks. It asks for a minimum set of vertices in a graph that observes all remaining vertices by exhaustively applying two observation rules. Our contribution is twofold. First, we determine the parameterized complexity of PDS by proving it is $W[P]$-complete when parameterized with respect to the solution size. We note that it was only known to be $W[2]$-hard before. Our second and main contribution is a new algorithm for PDS that efficiently solves practical instances. Our algorithm consists of two complementary parts. The first is a set of reduction rules for PDS that can also be used in conjunction with previously existing algorithms. The second is an algorithm for solving the remaining kernel based on the implicit hitting set approach. Our evaluation on a set of power grid instances from the literature shows that our solver outperforms previous state-of-the-art solvers for PDS by more than one order of magnitude on average. Furthermore, our algorithm can solve previously unsolved instances of continental scale within a few minutes.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司