亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a finite element discretisation to model the interaction between a poroelastic structure and an elastic medium. The consolidation problem considers fully coupled deformations across an interface, ensuring continuity of displacement and total traction, as well as no-flux for the fluid phase. Our formulation of the poroelasticity equations incorporates displacement, fluid pressure, and total pressure, while the elasticity equations adopt a displacement-pressure formulation. Notably, the transmission conditions at the interface are enforced without the need for Lagrange multipliers. We demonstrate the stability and convergence of the divergence-conforming finite element method across various polynomial degrees. The a priori error bounds remain robust, even when considering large variations in intricate model parameters such as Lam\'e constants, permeability, and storativity coefficient. To enhance computational efficiency and reliability, we develop residual-based a posteriori error estimators that are independent of the aforementioned coefficients. Additionally, we devise parameter-robust and optimal block diagonal preconditioners. Through numerical examples, including adaptive scenarios, we illustrate the scheme's properties such as convergence and parameter robustness.

相關內容

Strong stability is a property of time integration schemes for ODEs that preserve temporal monotonicity of solutions in arbitrary (inner product) norms. It is proved that explicit Runge--Kutta schemes of order $p\in 4\mathbb{N}$ with $s=p$ stages for linear autonomous ODE systems are not strongly stable, closing an open stability question from [Z.~Sun and C.-W.~Shu, SIAM J. Numer. Anal. 57 (2019), 1158--1182]. Furthermore, for explicit Runge--Kutta methods of order $p\in\mathbb{N}$ and $s>p$ stages, we prove several sufficient as well as necessary conditions for strong stability. These conditions involve both the stability function and the hypocoercivity index of the ODE system matrix. This index is a structural property combining the Hermitian and skew-Hermitian part of the system matrix.

In this work, we propose a simple yet generic preconditioned Krylov subspace method for a large class of nonsymmetric block Toeplitz all-at-once systems arising from discretizing evolutionary partial differential equations. Namely, our main result is to propose two novel symmetric positive definite preconditioners, which can be efficiently diagonalized by the discrete sine transform matrix. More specifically, our approach is to first permute the original linear system to obtain a symmetric one, and subsequently develop desired preconditioners based on the spectral symbol of the modified matrix. Then, we show that the eigenvalues of the preconditioned matrix sequences are clustered around $\pm 1$, which entails rapid convergence when the minimal residual method is devised. Alternatively, when the conjugate gradient method on the normal equations is used, we show that our preconditioner is effective in the sense that the eigenvalues of the preconditioned matrix sequence are clustered around unity. An extension of our proposed preconditioned method is given for high-order backward difference time discretization schemes, which can be applied on a wide range of time-dependent equations. Numerical examples are given, also in the variable-coefficient setting, to demonstrate the effectiveness of our proposed preconditioners, which consistently outperforms an existing block circulant preconditioner discussed in the relevant literature.

By combining a logarithm transformation with a corrected Milstein-type method, the present article proposes an explicit, unconditional boundary and dynamics preserving scheme for the stochastic susceptible-infected-susceptible (SIS) epidemic model that takes value in (0,N). The scheme applied to the model is first proved to have a strong convergence rate of order one. Further, the dynamic behaviors are analyzed for the numerical approximations and it is shown that the scheme can unconditionally preserve both the domain and the dynamics of the model. More precisely, the proposed scheme gives numerical approximations living in the domain (0,N) and reproducing the extinction and persistence properties of the original model for any time discretization step-size h > 0, without any additional requirements on the model parameters. Numerical experiments are presented to verify our theoretical results.

We consider the problem of estimating the roughness of the volatility in a stochastic volatility model that arises as a nonlinear function of fractional Brownian motion with drift. To this end, we introduce a new estimator that measures the so-called roughness exponent of a continuous trajectory, based on discrete observations of its antiderivative. We provide conditions on the underlying trajectory under which our estimator converges in a strictly pathwise sense. Then we verify that these conditions are satisfied by almost every sample path of fractional Brownian motion (with drift). As a consequence, we obtain strong consistency theorems in the context of a large class of rough volatility models. Numerical simulations show that our estimation procedure performs well after passing to a scale-invariant modification of our estimator.

A variant of the standard notion of branching bisimilarity for processes with discrete relative timing is proposed which is coarser than the standard notion. Using a version of ACP (Algebra of Communicating Processes) with abstraction for processes with discrete relative timing, it is shown that the proposed variant allows of both the functional correctness and the performance properties of the PAR (Positive Acknowledgement with Retransmission) protocol to be analyzed. In the version of ACP concerned, the difference between the standard notion of branching bisimilarity and its proposed variant is characterized by a single axiom schema.

Reduced-order models have been widely adopted in fluid mechanics, particularly in the context of Newtonian fluid flows. These models offer the ability to predict complex dynamics, such as instabilities and oscillations, at a considerably reduced computational cost. In contrast, the reduced-order modeling of non-Newtonian viscoelastic fluid flows remains relatively unexplored. This work leverages the sparse identification of nonlinear dynamics (SINDy) algorithm to develop interpretable reduced-order models for a broad class of viscoelastic flows. In particular, we explore a benchmark oscillatory viscoelastic flow on the four-roll mill geometry using the classical Oldroyd-B fluid. This flow exemplifies many canonical challenges associated with non-Newtonian flows, including transitions, asymmetries, instabilities, and bifurcations arising from the interplay of viscous and elastic forces, all of which require expensive computations in order to resolve the fast timescales and long transients characteristic of such flows. First, we demonstrate the effectiveness of our data-driven surrogate model in predicting the transient evolution on a simplified representation of the dynamical system. We then describe the ability of the reduced-order model to accurately reconstruct spatial flow field in a basis obtained via proper orthogonal decomposition. Finally, we develop a fully parametric, nonlinear model that captures the dominant variations of the dynamics with the relevant nondimensional Weissenberg number. This work illustrates the potential to reduce computational costs and improve design, optimization, and control of a large class of non-Newtonian fluid flows with modern machine learning and reduced-order modeling techniques.

We present a rigorous and precise analysis of the maximum degree and the average degree in a dynamic duplication-divergence graph model introduced by Sol\'e, Pastor-Satorras et al. in which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating a copy of some node and then randomly alternating the neighborhood of a new node with probability $p$. This model captures the growth of some real-world processes e.g. biological or social networks. In this paper, we prove that for some $0 < p < 1$ the maximum degree and the average degree of a duplication-divergence graph on $t$ vertices are asymptotically concentrated with high probability around $t^p$ and $\max\{t^{2 p - 1}, 1\}$, respectively, i.e. they are within at most a polylogarithmic factor from these values with probability at least $1 - t^{-A}$ for any constant $A > 0$.

We present a mixed finite element method with triangular and parallelogram meshes for the Kirchhoff-Love plate bending model. Critical ingredient is the construction of low-dimensional local spaces and appropriate degrees of freedom that provide conformity in terms of a sufficiently large tensor space and that allow for any kind of physically relevant Dirichlet and Neumann boundary conditions. For Dirichlet boundary conditions and polygonal plates, we prove quasi-optimal convergence of the mixed scheme. An a posteriori error estimator is derived for the special case of the biharmonic problem. Numerical results for regular and singular examples illustrate our findings. They confirm expected convergence rates and exemplify the performance of an adaptive algorithm steered by our error estimator.

Health outcomes, such as body mass index and cholesterol levels, are known to be dependent on age and exhibit varying effects with their associated risk factors. In this paper, we propose a novel framework for dynamic modeling of the associations between health outcomes and risk factors using varying-coefficients (VC) regional quantile regression via K-nearest neighbors (KNN) fused Lasso, which captures the time-varying effects of age. The proposed method has strong theoretical properties, including a tight estimation error bound and the ability to detect exact clustered patterns under certain regularity conditions. To efficiently solve the resulting optimization problem, we develop an alternating direction method of multipliers (ADMM) algorithm. Our empirical results demonstrate the efficacy of the proposed method in capturing the complex age-dependent associations between health outcomes and their risk factors.

We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.

北京阿比特科技有限公司