We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.
Many real-world processes have complex tail dependence structures that cannot be characterized using classical Gaussian processes. More flexible spatial extremes models exhibit appealing extremal dependence properties but are often exceedingly prohibitive to fit and simulate from in high dimensions. In this paper, we develop a new spatial extremes model that has flexible and non-stationary dependence properties, and we integrate it in the encoding-decoding structure of a variational autoencoder (XVAE), whose parameters are estimated via variational Bayes combined with deep learning. The XVAE can be used as a spatio-temporal emulator that characterizes the distribution of potential mechanistic model output states and produces outputs that have the same statistical properties as the inputs, especially in the tail. As an aside, our approach also provides a novel way of making fast inference with complex extreme-value processes. Through extensive simulation studies, we show that our XVAE is substantially more time-efficient than traditional Bayesian inference while also outperforming many spatial extremes models with a stationary dependence structure. To further demonstrate the computational power of the XVAE, we analyze a high-resolution satellite-derived dataset of sea surface temperature in the Red Sea, which includes 30 years of daily measurements at 16703 grid cells. We find that the extremal dependence strength is weaker in the interior of Red Sea and it has decreased slightly over time.
Langevin dynamics are widely used in sampling high-dimensional, non-Gaussian distributions whose densities are known up to a normalizing constant. In particular, there is strong interest in unadjusted Langevin algorithms (ULA), which directly discretize Langevin dynamics to estimate expectations over the target distribution. We study the use of transport maps that approximately normalize a target distribution as a way to precondition and accelerate the convergence of Langevin dynamics. We show that in continuous time, when a transport map is applied to Langevin dynamics, the result is a Riemannian manifold Langevin dynamics (RMLD) with metric defined by the transport map. We also show that applying a transport map to an irreversibly-perturbed ULA results in a geometry-informed irreversible perturbation (GiIrr) of the original dynamics. These connections suggest more systematic ways of learning metrics and perturbations, and also yield alternative discretizations of the RMLD described by the map, which we study. Under appropriate conditions, these discretized processes can be endowed with non-asymptotic bounds describing convergence to the target distribution in 2-Wasserstein distance. Illustrative numerical results complement our theoretical claims.
We introduce the modified planar rotator method (MPRS), a physically inspired machine learning method for spatial/temporal regression. MPRS is a non-parametric model which incorporates spatial or temporal correlations via short-range, distance-dependent ``interactions'' without assuming a specific form for the underlying probability distribution. Predictions are obtained by means of a fully autonomous learning algorithm which employs equilibrium conditional Monte Carlo simulations. MPRS is able to handle scattered data and arbitrary spatial dimensions. We report tests on various synthetic and real-word data in one, two and three dimensions which demonstrate that the MPRS prediction performance (without parameter tuning) is competitive with standard interpolation methods such as ordinary kriging and inverse distance weighting. In particular, MPRS is a particularly effective gap-filling method for rough and non-Gaussian data (e.g., daily precipitation time series). MPRS shows superior computational efficiency and scalability for large samples. Massive data sets involving millions of nodes can be processed in a few seconds on a standard personal computer.
The complexity class Quantum Statistical Zero-Knowledge ($\mathsf{QSZK}$) captures computational difficulties of the time-bounded quantum state testing problem with respect to the trace distance, known as the Quantum State Distinguishability Problem (QSDP) introduced by Watrous (FOCS 2002). However, QSDP is in $\mathsf{QSZK}$ merely within the constant polarizing regime, similar to its classical counterpart shown by Sahai and Vadhan (JACM 2003) due to the polarization lemma (error reduction for SDP). Recently, Berman, Degwekar, Rothblum, and Vasudevan (TCC 2019) extended the $\mathsf{SZK}$ containment for SDP beyond the polarizing regime via the time-bounded distribution testing problems with respect to the triangular discrimination and the Jensen-Shannon divergence. Our work introduces proper quantum analogs for these problems by defining quantum counterparts for triangular discrimination. We investigate whether the quantum analogs behave similarly to their classical counterparts and examine the limitations of existing approaches to polarization regarding quantum distances. These new $\mathsf{QSZK}$-complete problems improve $\mathsf{QSZK}$ containments for QSDP beyond the polarizing regime and establish a simple $\mathsf{QSZK}$-hardness for the quantum entropy difference problem (QEDP) defined by Ben-Aroya, Schwartz, and Ta-Shma (ToC 2010). Furthermore, we prove that QSDP with some exponentially small errors is in $\mathsf{PP}$, while the same problem without error is in $\mathsf{NQP}$.
Temporal analysis of products (TAP) reactors enable experiments that probe numerous kinetic processes within a single set of experimental data through variations in pulse intensity, delay, or temperature. Selecting additional TAP experiments often involves arbitrary selection of reaction conditions or the use of chemical intuition. To make experiment selection in TAP more robust, we explore the efficacy of model-based design of experiments (MBDoE) for precision in TAP reactor kinetic modeling. We successfully applied this approach to a case study of synthetic oxidative propane dehydrogenation (OPDH) that involves pulses of propane and oxygen. We found that experiments identified as optimal through the MBDoE for precision generally reduce parameter uncertainties to a higher degree than alternative experiments. The performance of MBDoE for model divergence was also explored for OPDH, with the relevant active sites (catalyst structure) being unknown. An experiment that maximized the divergence between the three proposed mechanisms was identified and led to clear mechanism discrimination. However, re-optimization of kinetic parameters eliminated the ability to discriminate. The findings yield insight into the prospects and limitations of MBDoE for TAP and transient kinetic experiments.
Reinforcement learning(RL) algorithms face the challenge of limited data efficiency, particularly when dealing with high-dimensional state spaces and large-scale problems. Most of RL methods often rely solely on state transition information within the same episode when updating the agent's Critic, which can lead to low data efficiency and sub-optimal training time consumption. Inspired by human-like analogical reasoning abilities, we introduce a novel mesh information propagation mechanism, termed the 'Imagination Mechanism (IM)', designed to significantly enhance the data efficiency of RL algorithms. Specifically, IM enables information generated by a single sample to be effectively broadcasted to different states across episodes, instead of simply transmitting in the same episode. This capability enhances the model's comprehension of state interdependencies and facilitates more efficient learning of limited sample information. To promote versatility, we extend the IM to function as a plug-and-play module that can be seamlessly and fluidly integrated into other widely adopted RL algorithms. Our experiments demonstrate that IM consistently boosts four mainstream SOTA RL algorithms, such as SAC, PPO, DDPG, and DQN, by a considerable margin, ultimately leading to superior performance than before across various tasks. For access to our code and data, please visit //github.com/OuAzusaKou/imagination_mechanism
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.
We study the multivariate deconvolution problem of recovering the distribution of a signal from independent and identically distributed observations additively contaminated with random errors (noise) from a known distribution. For errors with independent coordinates having ordinary smooth densities, we derive an inversion inequality relating the $L^1$-Wasserstein distance between two distributions of the signal to the $L^1$-distance between the corresponding mixture densities of the observations. This smoothing inequality outperforms existing inversion inequalities. As an application of the inversion inequality to the Bayesian framework, we consider $1$-Wasserstein deconvolution with Laplace noise in dimension one using a Dirichlet process mixture of normal densities as a prior measure on the mixing distribution (or distribution of the signal). We construct an adaptive approximation of the sampling density by convolving the Laplace density with a well-chosen mixture of normal densities and show that the posterior measure concentrates around the sampling density at a nearly minimax rate, up to a log-factor, in the $L^1$-distance. The same posterior law is also shown to automatically adapt to the unknown Sobolev regularity of the mixing density, thus leading to a new Bayesian adaptive estimation procedure for mixing distributions with regular densities under the $L^1$-Wasserstein metric. We illustrate utility of the inversion inequality also in a frequentist setting by showing that an appropriate isotone approximation of the classical kernel deconvolution estimator attains the minimax rate of convergence for $1$-Wasserstein deconvolution in any dimension $d\geq 1$, when only a tail condition is required on the latent mixing density and we derive sharp lower bounds for these problems
Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.
The problem of sequential anomaly detection and identification is considered in the presence of a sampling constraint. Specifically, multiple data streams are generated by distinct sources and the goal is to quickly identify those that exhibit ``anomalous'' behavior, when it is not possible to sample every source at each time instant. Thus, in addition to a stopping rule, which determines when to stop sampling, and a decision rule, which indicates which sources to identify as anomalous upon stopping, one needs to specify a sampling rule that determines which sources to sample at each time instant. The focus of this work is on ordering sampling rules, which sample the data sources, among those currently estimated as anomalous (resp. non-anomalous), for which the corresponding local test statistics have the smallest (resp. largest) values. It is shown that with an appropriate design, which is specified explicitly, an ordering sampling rule leads to the optimal expected time for stopping, among all policies that satisfy the same sampling and error constraints, to a first-order asymptotic approximation as the false positive and false negative error rates under control both go to zero. This is the first asymptotic optimality result for ordering sampling rules when multiple sources can be sampled per time instant. Moreover, this is established under a general setup where the number of anomalies is not required to be a priori known. A novel proof technique is introduced, which unifies different versions of the problem regarding the homogeneity of the sources and prior information on the number of anomalies.