亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The underlay cognitive radio-based hybrid radio frequency / free-space optical (RF / FSO) systems have been emerged as a promising technology due to its ability to eliminate spectrum scarcity and spectrum under-utilization problems. Consequently, this work analyzes the physical layer security aspects of a cognitive RF / FSO hybrid network that includes a primary user, a secondary source, a secondary receiver, and an eavesdropper where the secret communication takes place between two legitimate secondary peers over the RF and FSO links simultaneously, and the eavesdropper can overhear the RF link only. In particular, the maximum transmit power limitation at the secondary user as well as the permissible interference power restriction at the primary user are also taken into consideration. All the RF links are modeled with $\alpha$-$\mu$ fading whereas the FSO link undergoes M\'alaga (M) turbulence with link blockage and pointing error impairments. At the receiver, the selection combining diversity technique is utilized to select the signal with the best electrical signal-to-ratio (SNR). Moreover, the closed-form expressions for the secrecy outage probability, probability of strictly positive secrecy capacity, and effective secrecy throughput are derived to analyze the secrecy performance. Besides, the impacts of fading, primary-secondary interference, detection techniques, link blockage probability, atmospheric turbulence, and pointing error are examined. Finally, Monte-Carlo simulations are performed to corroborate the derived expressions.

相關內容

Disordered speech recognition is a highly challenging task. The underlying neuro-motor conditions of people with speech disorders, often compounded with co-occurring physical disabilities, lead to the difficulty in collecting large quantities of speech required for system development. This paper investigates a set of data augmentation techniques for disordered speech recognition, including vocal tract length perturbation (VTLP), tempo perturbation and speed perturbation. Both normal and disordered speech were exploited in the augmentation process. Variability among impaired speakers in both the original and augmented data was modeled using learning hidden unit contributions (LHUC) based speaker adaptive training. The final speaker adapted system constructed using the UASpeech corpus and the best augmentation approach based on speed perturbation produced up to 2.92% absolute (9.3% relative) word error rate (WER) reduction over the baseline system without data augmentation, and gave an overall WER of 26.37% on the test set containing 16 dysarthric speakers.

Automatic recognition of disordered speech remains a highly challenging task to date. Sources of variability commonly found in normal speech including accent, age or gender, when further compounded with the underlying causes of speech impairment and varying severity levels, create large diversity among speakers. To this end, speaker adaptation techniques play a vital role in current speech recognition systems. Motivated by the spectro-temporal level differences between disordered and normal speech that systematically manifest in articulatory imprecision, decreased volume and clarity, slower speaking rates and increased dysfluencies, novel spectro-temporal subspace basis embedding deep features derived by SVD decomposition of speech spectrum are proposed to facilitate both accurate speech intelligibility assessment and auxiliary feature based speaker adaptation of state-of-the-art hybrid DNN and end-to-end disordered speech recognition systems. Experiments conducted on the UASpeech corpus suggest the proposed spectro-temporal deep feature adapted systems consistently outperformed baseline i-Vector adaptation by up to 2.63% absolute (8.6% relative) reduction in word error rate (WER) with or without data augmentation. Learning hidden unit contribution (LHUC) based speaker adaptation was further applied. The final speaker adapted system using the proposed spectral basis embedding features gave an overall WER of 25.6% on the UASpeech test set of 16 dysarthric speakers

Machine learning (ML) has shown great promise in optimizing various aspects of the physical layer processing in wireless communication systems. In this paper, we use ML to learn jointly the transmit waveform and the frequency-domain receiver. In particular, we consider a scenario where the transmitter power amplifier is operating in a nonlinear manner, and ML is used to optimize the waveform to minimize the out-of-band emissions. The system also learns a constellation shape that facilitates pilotless detection by the simultaneously learned receiver. The simulation results show that such an end-to-end optimized system can communicate data more accurately and with less out-of-band emissions than conventional systems, thereby demonstrating the potential of ML in optimizing the air interface. To the best of our knowledge, there are no prior works considering the power amplifier induced emissions in an end-to-end learned system. These findings pave the way towards an ML-native air interface, which could be one of the building blocks of 6G.

Integrated Sensing and Communication (ISAC) has attracted substantial attraction in recent years for spectral efficiency improvement, enabling hardware and spectrum sharing for simultaneous sensing and signaling operations. In-band Full Duplex (FD) is being considered as a key enabling technology for ISAC applications due to its simultaneous transmission and reception capability. In this paper, we present an FD-based ISAC system operating at millimeter Wave (mmWave) frequencies, where a massive Multiple-Input Multiple-Output (MIMO) Base Station (BS) node employing hybrid Analog and Digital (A/D) beamforming is communicating with a DownLink (DL) multi-antenna user and the same waveform is utilized at the BS receiver for sensing the radar targets in its coverage environment. We develop a sensing algorithm that is capable of estimating Direction of Arrival (DoA), range, and relative velocity of the radar targets. A joint optimization framework for designing the A/D transmit and receive beamformers as well as the Self-Interference (SI) cancellation is presented with the objective to maximize the achievable DL rate and the accuracy of the radar target sensing performance. Our simulation results, considering fifth Generation (5G) Orthogonal Frequency Division Multiplexing (OFDM) waveforms, verify our approach's high precision in estimating DoA, range, and velocity of multiple radar targets, while maximizing the DL communication rate.

Estimating instruction-level throughput is critical for many applications: multimedia, low-latency networking, medical, automotive, avionic, and industrial control systems all rely on tightly calculable and accurate timing bounds of their software. Unfortunately, how long a program may run - or if it may indeed stop at all - cannot be answered in the general case. This is why state-of-the-art throughput estimation tools usually focus on a subset of operations and make several simplifying assumptions. Correctly identifying these sets of constraints and regions of interest in the program typically requires source code, specialized tools, and dedicated expert knowledge. Whenever a single instruction is modified, this process must be repeated, incurring high costs when iteratively developing timing sensitive code in practice. In this paper, we present MCAD, a novel and lightweight timing analysis framework that can identify the effects of code changes on the microarchitectural level for binary programs. MCAD provides accurate differential throughput estimates by emulating whole program execution using QEMU and forwarding traces to LLVM for instruction-level analysis. This allows developers to iterate quickly, with low overhead, using common tools: identifying execution paths that are less sensitive to changes over timing-critical paths only takes minutes within MCAD. To the best of our knowledge this represents an entirely new capability that reduces turnaround times for differential throughput estimation by several orders of magnitude compared to state-of-the-art tools. Our detailed evaluation shows that MCAD scales to real-world applications like FFmpeg and Clang with millions of instructions, achieving < 3% geo mean error compared to ground truth timings from hardware-performance counters on x86 and ARM machines.

This paper is concerned with the asymptotic distribution of the largest eigenvalues for some nonlinear random matrix ensemble stemming from the study of neural networks. More precisely we consider $M= \frac{1}{m} YY^\top$ with $Y=f(WX)$ where $W$ and $X$ are random rectangular matrices with i.i.d. centered entries. This models the data covariance matrix or the Conjugate Kernel of a single layered random Feed-Forward Neural Network. The function $f$ is applied entrywise and can be seen as the activation function of the neural network. We show that the largest eigenvalue has the same limit (in probability) as that of some well-known linear random matrix ensembles. In particular, we relate the asymptotic limit of the largest eigenvalue for the nonlinear model to that of an information-plus-noise random matrix, establishing a possible phase transition depending on the function $f$ and the distribution of $W$ and $X$. This may be of interest for applications to machine learning.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

Computer vision technologies are very attractive for practical applications running on embedded systems. For such an application, it is desirable for the deployed algorithms to run in high-speed and require no offline training. To develop a single-target tracking algorithm with these properties, we propose an ensemble of the kernelized correlation filters (KCF), we call it EnKCF. A committee of KCFs is specifically designed to address the variations in scale and translation of moving objects. To guarantee a high-speed run-time performance, we deploy each of KCFs in turn, instead of applying multiple KCFs to each frame. To minimize any potential drifts between individual KCFs transition, we developed a particle filter. Experimental results showed that the performance of ours is, on average, 70.10% for precision at 20 pixels, 53.00% for success rate for the OTB100 data, and 54.50% and 40.2% for the UAV123 data. Experimental results showed that our method is better than other high-speed trackers over 5% on precision on 20 pixels and 10-20% on AUC on average. Moreover, our implementation ran at 340 fps for the OTB100 and at 416 fps for the UAV123 dataset that is faster than DCF (292 fps) for the OTB100 and KCF (292 fps) for the UAV123. To increase flexibility of the proposed EnKCF running on various platforms, we also explored different levels of deep convolutional features.

北京阿比特科技有限公司