亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating instruction-level throughput is critical for many applications: multimedia, low-latency networking, medical, automotive, avionic, and industrial control systems all rely on tightly calculable and accurate timing bounds of their software. Unfortunately, how long a program may run - or if it may indeed stop at all - cannot be answered in the general case. This is why state-of-the-art throughput estimation tools usually focus on a subset of operations and make several simplifying assumptions. Correctly identifying these sets of constraints and regions of interest in the program typically requires source code, specialized tools, and dedicated expert knowledge. Whenever a single instruction is modified, this process must be repeated, incurring high costs when iteratively developing timing sensitive code in practice. In this paper, we present MCAD, a novel and lightweight timing analysis framework that can identify the effects of code changes on the microarchitectural level for binary programs. MCAD provides accurate differential throughput estimates by emulating whole program execution using QEMU and forwarding traces to LLVM for instruction-level analysis. This allows developers to iterate quickly, with low overhead, using common tools: identifying execution paths that are less sensitive to changes over timing-critical paths only takes minutes within MCAD. To the best of our knowledge this represents an entirely new capability that reduces turnaround times for differential throughput estimation by several orders of magnitude compared to state-of-the-art tools. Our detailed evaluation shows that MCAD scales to real-world applications like FFmpeg and Clang with millions of instructions, achieving < 3% geo mean error compared to ground truth timings from hardware-performance counters on x86 and ARM machines.

相關內容

Interactive machine learning (IML) is a field of research that explores how to leverage both human and computational abilities in decision making systems. IML represents a collaboration between multiple complementary human and machine intelligent systems working as a team, each with their own unique abilities and limitations. This teamwork might mean that both systems take actions at the same time, or in sequence. Two major open research questions in the field of IML are: "How should we design systems that can learn to make better decisions over time with human interaction?" and "How should we evaluate the design and deployment of such systems?" A lack of appropriate consideration for the humans involved can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. Thus, our goal with this work is to present a human-centred guide to designing and evaluating IML systems while mitigating risks. This guide is intended to be used by machine learning practitioners who are responsible for the health, safety, and well-being of interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness, and abiding by applicable legal statutes. With these values and principles in mind, we as a machine learning research community can better achieve goals of augmenting human skills and abilities. This practical guide therefore aims to support many of the responsible decisions necessary throughout the iterative design, development, and dissemination of IML systems.

Current challenges of the manufacturing industry require modular and changeable manufacturing systems that can be adapted to variable conditions with little effort. At the same time, production recipes typically represent important company know-how that should not be directly tied to changing plant configurations. Thus, there is a need to model general production recipes independent of specific plant layouts. For execution of such a recipe however, a binding to then available production resources needs to be made. In this contribution, select a suitable modeling language to model and execute such recipes. Furthermore, we present an approach to solve the issue of recipe modeling and execution in modular plants using semantically modeled capabilities and skills as well as BPMN. We make use of BPMN to model \emph{capability processes}, i.e. production processes referencing abstract descriptions of resource functions. These capability processes are not bound to a certain plant layout, as there can be multiple resources fulfilling the same capability. For execution, every capability in a capability process is replaced by a skill realizing it, effectively creating a \emph{skill process} consisting of various skill invocations. The presented solution is capable of orchestrating and executing complex processes that integrate production steps with typical IT functionalities such as error handling, user interactions and notifications. Benefits of the approach are demonstrated using a flexible manufacturing system.

The monotone variational inequality is a central problem in mathematical programming that unifies and generalizes many important settings such as smooth convex optimization, two-player zero-sum games, convex-concave saddle point problems, etc. The extragradient method by Korpelevich [1976] is one of the most popular methods for solving monotone variational inequalities. Despite its long history and intensive attention from the optimization and machine learning community, the following major problem remains open. What is the last-iterate convergence rate of the extragradient method for monotone and Lipschitz variational inequalities with constraints? We resolve this open problem by showing a tight $O\left(\frac{1}{\sqrt{T}}\right)$ last-iterate convergence rate for arbitrary convex feasible sets, which matches the lower bound by Golowich et al. [2020]. Our rate is measured in terms of the standard gap function. The technical core of our result is the monotonicity of a new performance measure -- the tangent residual, which can be viewed as an adaptation of the norm of the operator that takes the local constraints into account. To establish the monotonicity, we develop a new approach that combines the power of the sum-of-squares programming with the low dimensionality of the update rule of the extragradient method. We believe our approach has many additional applications in the analysis of iterative methods.

Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications such as augmented reality, multiplayer gaming, and industrial automation. While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast cloud network flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing cloud network control techniques.

Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates--while accounting for this structured dependence--remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single "best" subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.

With the rapid growth of software, using third-party libraries (TPLs) has become increasingly popular. The prosperity of the library usage has provided the software engineers with handful of methods to facilitate and boost the program development. Unfortunately, it also poses great challenges as it becomes much more difficult to manage the large volume of libraries. Researches and studies have been proposed to detect and understand the TPLs in the software. However, most existing approaches rely on syntactic features, which are not robust when these features are changed or deliberately hidden by the adversarial parties. Moreover, these approaches typically model each of the imported libraries as a whole, therefore, cannot be applied to scenarios where the host software only partially uses the library code segments. To detect both fully and partially imported TPLs at the semantic level, we propose ModX, a framework that leverages novel program modularization techniques to decompose the program into finegrained functionality-based modules. By extracting both syntactic and semantic features, it measures the distance between modules to detect similar library module reuse in the program. Experimental results show that ModX outperforms other modularization tools by distinguishing more coherent program modules with 353% higher module quality scores and beats other TPL detection tools with on average 17% better in precision and 8% better in recall.

Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.

Implicit bias may perpetuate healthcare disparities for marginalized patient populations. Such bias is expressed in communication between patients and their providers. We design an ecosystem with guidance from providers to make this bias explicit in patient-provider communication. Our end users are providers seeking to improve their quality of care for patients who are Black, Indigenous, People of Color (BIPOC) and/or Lesbian, Gay, Bisexual, Transgender, and Queer (LGBTQ). We present wireframes displaying communication metrics that negatively impact patient-centered care divided into the following categories: digital nudge, dashboard, and guided reflection. Our wireframes provide quantitative, real-time, and conversational feedback promoting provider reflection on their interactions with patients. This is the first design iteration toward the development of a tool to raise providers' awareness of their own implicit biases.

We present faster-than-native alternatives for the full AVX512-VP2INTERSECT instruction subset using basic AVX512F instructions. These alternatives compute only one of the output masks, which is sufficient for the typical case of computing the intersection of two sorted lists of integers, or computing the size of such an intersection. While the na\"ive implementation (compare the first input vector against all rotations of the second) is slower than the native instructions, we show that by rotating both the first and second operands at the same time there is a significant saving in the total number of vector rotations, resulting in the emulations being faster than the native instructions, for all instructions in the VP2INTERSECT subset. Additionally, the emulations can be easily extended to other types of inputs (e.g. packed vectors of 16-bit integers) for which native instructions are not available.

Advanced wearable devices are increasingly incorporating high-resolution multi-camera systems. As state-of-the-art neural networks for processing the resulting image data are computationally demanding, there has been growing interest in leveraging fifth generation (5G) wireless connectivity and mobile edge computing for offloading this processing to the cloud. To assess this possibility, this paper presents a detailed simulation and evaluation of 5G wireless offloading for object detection within a powerful, new smart wearable called VIS4ION, for the Blind-and-Visually Impaired (BVI). The current VIS4ION system is an instrumented book-bag with high-resolution cameras, vision processing and haptic and audio feedback. The paper considers uploading the camera data to a mobile edge cloud to perform real-time object detection and transmitting the detection results back to the wearable. To determine the video requirements, the paper evaluates the impact of video bit rate and resolution on object detection accuracy and range. A new street scene dataset with labeled objects relevant to BVI navigation is leveraged for analysis. The vision evaluation is combined with a detailed full-stack wireless network simulation to determine the distribution of throughputs and delays with real navigation paths and ray-tracing from new high-resolution 3D models in an urban environment. For comparison, the wireless simulation considers both a standard 4G-Long Term Evolution (LTE) carrier and high-rate 5G millimeter-wave (mmWave) carrier. The work thus provides a thorough and realistic assessment of edge computing with mmWave connectivity in an application with both high bandwidth and low latency requirements.

北京阿比特科技有限公司