The inverse problems about fractional Calder\'on problem and fractional Schr\"odinger equations are of interest in the study of mathematics. In this paper, we propose the inverse problem to simultaneously reconstruct potentials and sources for fractional Schr\"odinger equations with internal source terms. We show the uniqueness for reconstructing the two terms under measurements from two different nonhomogeneous boundary conditions. By introducing the variational Tikhonov regularization functional, numerical method based on conjugate gradient method(CGM) is provided to realize this inverse problem. Numerical experiments are given to gauge the performance of the numerical method.
We introduce an algebraic concept of the frame for abstract conditional independence (CI) models, together with basic operations with respect to which such a frame should be closed: copying and marginalization. Three standard examples of such frames are (discrete) probabilistic CI structures, semi-graphoids and structural semi-graphoids. We concentrate on those frames which are closed under the operation of set-theoretical intersection because, for these, the respective families of CI models are lattices. This allows one to apply the results from lattice theory and formal concept analysis to describe such families in terms of implications among CI statements. The central concept of this paper is that of self-adhesivity defined in algebraic terms, which is a combinatorial reflection of the self-adhesivity concept studied earlier in context of polymatroids and information theory. The generalization also leads to a self-adhesivity operator defined on the hyper-level of CI frames. We answer some of the questions related to this approach and raise other open questions. The core of the paper is in computations. The combinatorial approach to computation might overcome some memory and space limitation of software packages based on polyhedral geometry, in particular, if SAT solvers are utilized. We characterize some basic CI families over 4 variables in terms of canonical implications among CI statements. We apply our method in information-theoretical context to the task of entropic region demarcation over 5 variables.
We solve high-dimensional steady-state Fokker-Planck equations on the whole space by applying tensor neural networks. The tensor networks are a linear combination of tensor products of one-dimensional feedforward networks or a linear combination of several selected radial basis functions. The use of tensor feedforward networks allows us to efficiently exploit auto-differentiation (in physical variables) in major Python packages while using radial basis functions can fully avoid auto-differentiation, which is rather expensive in high dimensions. We then use the physics-informed neural networks and stochastic gradient descent methods to learn the tensor networks. One essential step is to determine a proper bounded domain or numerical support for the Fokker-Planck equation. To better train the tensor radial basis function networks, we impose some constraints on parameters, which lead to relatively high accuracy. We demonstrate numerically that the tensor neural networks in physics-informed machine learning are efficient for steady-state Fokker-Planck equations from two to ten dimensions.
In this paper we develop a fully nonconforming virtual element method (VEM) of arbitrary approximation order for the two dimensional Cahn-Hilliard equation. We carry out the error analysis for the semidiscrete (continuous-in-time) scheme and verify the theoretical convergence result via numerical experiments. We present a fully discrete scheme which uses a convex splitting Runge-Kutta method to discretize in the temporal variable alongside the virtual element spatial discretization.
In the framework of a mixed finite element method, a structure-preserving formulation for incompressible MHD equations with general boundary conditions is proposed. A leapfrog-type temporal scheme fully decouples the fluid part from the Maxwell part by means of staggered discrete time sequences and, in doing so, partially linearizes the system. Conservation and dissipation properties of the formulation before and after the decoupling are analyzed. We demonstrate optimal spatial and second-order temporal error convergence and conservation and dissipation properties of the proposed method using manufactured solutions, and apply it to the benchmark Orszag-Tang and lid-driven cavity test cases.
We introduce two models of space-bounded quantum interactive proof systems, ${\sf QIPL}$ and ${\sf QIP_{\rm U}L}$. The ${\sf QIP_{\rm U}L}$ model, a space-bounded variant of quantum interactive proofs (${\sf QIP}$) introduced by Watrous (CC 2003) and Kitaev and Watrous (STOC 2000), restricts verifier actions to unitary circuits. In contrast, ${\sf QIPL}$ allows logarithmically many intermediate measurements per verifier action (with a high-concentration condition on yes instances), making it the weakest model that encompasses the classical model of Condon and Ladner (JCSS 1995). We characterize the computational power of ${\sf QIPL}$ and ${\sf QIP_{\rm U}L}$. When the message number $m$ is polynomially bounded, ${\sf QIP_{\rm U}L} \subsetneq {\sf QIPL}$ unless ${\sf P} = {\sf NP}$: - ${\sf QIPL}$ exactly characterizes ${\sf NP}$. - ${\sf QIP_{\rm U}L}$ is contained in ${\sf P}$ and contains ${\sf SAC}^1 \cup {\sf BQL}$, where ${\sf SAC}^1$ denotes problems solvable by classical logarithmic-depth, semi-unbounded fan-in circuits. However, this distinction vanishes when $m$ is constant. Our results further indicate that intermediate measurements uniquely impact space-bounded quantum interactive proofs, unlike in space-bounded quantum computation, where ${\sf BQL}={\sf BQ_{\rm U}L}$. We also introduce space-bounded unitary quantum statistical zero-knowledge (${\sf QSZK_{\rm U}L}$), a specific form of ${\sf QIP_{\rm U}L}$ proof systems with statistical zero-knowledge against any verifier. This class is a space-bounded variant of quantum statistical zero-knowledge (${\sf QSZK}$) defined by Watrous (SICOMP 2009). We prove that ${\sf QSZK_{\rm U}L} = {\sf BQL}$, implying that the statistical zero-knowledge property negates the computational advantage typically gained from the interaction.
We propose numerical schemes for the approximate solution of problems defined on the edges of a one-dimensional graph. In particular, we consider linear transport and a drift-diffusion equations, and discretize them by extending Finite Volume schemes with upwind flux to domains presenting bifurcation nodes with an arbitrary number of incoming and outgoing edges, and implicit time discretization. We show that the discrete problems admit positive unique solutions, and we test the methods on the intricate geometry of an electrical treeing.
We propose a parametric hazard model obtained by enforcing positivity in the damped harmonic oscillator. The resulting model has closed-form hazard and cumulative hazard functions, facilitating likelihood and Bayesian inference on the parameters. We show that this model can capture a range of hazard shapes, such as increasing, decreasing, unimodal, bathtub, and oscillatory patterns, and characterize the tails of the corresponding survival function. We illustrate the use of this model in survival analysis using real data.
An asymptotic-preserving (AP) implicit-explicit PN numerical scheme is proposed for the gray model of the radiative transfer equation, where the first- and second-order numerical schemes are discussed for both the linear and nonlinear models. The AP property of this numerical scheme is proved theoretically and numerically, while the numerical stability of the linear model is verified by Fourier analysis. Several classical benchmark examples are studied to validate the efficiency of this numerical scheme.
The Fredholm-Hammerstein integral equations (FHIEs) with weakly singular kernels exhibit multi-point singularity at the endpoints or boundaries. The dense discretized matrices result in high computational complexity when employing numerical methods. To address this, we propose a novel class of mapped Hermite functions, which are constructed by applying a mapping to Hermite polynomials.We establish fundamental approximation theory for the orthogonal functions. We propose MHFs-spectral collocation method and MHFs-smoothing transformation method to solve the two-point weakly singular FHIEs, respectively. Error analysis and numerical results demonstrate that our methods, based on the new orthogonal functions, are particularly effective for handling problems with weak singularities at two endpoints, yielding exponential convergence rate. We position this work as the first to directly study the mapped spectral method for multi-point singularity problems, to the best of our knowledge.
We study conditional linear factor models in the context of asset pricing panels. Our analysis focuses on conditional means and covariances to characterize the cross-sectional and inter-temporal properties of returns and factors as well as their interrelationships. We also review the conditions outlined in Kozak and Nagel (2024) and show how the conditional mean-variance efficient portfolio of an unbalanced panel can be spanned by low-dimensional factor portfolios, even without assuming invertibility of the conditional covariance matrices. Our analysis provides a comprehensive foundation for the specification and estimation of conditional linear factor models.