亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Positioned between pre-training and user deployment, aligning large language models (LLMs) through reinforcement learning (RL) has emerged as a prevailing strategy for training instruction following-models such as ChatGPT. In this work, we initiate the study of privacy-preserving alignment of LLMs through Differential Privacy (DP) in conjunction with RL. Following the influential work of Ziegler et al. (2020), we study two dominant paradigms: (i) alignment via RL without human in the loop (e.g., positive review generation) and (ii) alignment via RL from human feedback (RLHF) (e.g., summarization in a human-preferred way). We give a new DP framework to achieve alignment via RL, and prove its correctness. Our experimental results validate the effectiveness of our approach, offering competitive utility while ensuring strong privacy protections.

相關內容

The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Nevertheless, there are inherent challenges associated with these new high-dimensional spatial data, such as zero-inflation, over-dispersion, and heterogeneity. These challenges pose obstacles to effective clustering, which is a fundamental problem in SRT data analysis. Current computational approaches often rely on heuristic data preprocessing and arbitrary cluster number prespecification, leading to considerable information loss and consequently, suboptimal downstream analysis. In response to these challenges, we introduce BNPSpace, a novel Bayesian nonparametric spatial clustering framework that directly models SRT count data. BNPSpace facilitates the partitioning of the whole spatial domain, which is characterized by substantial heterogeneity, into homogeneous spatial domains with similar molecular characteristics while identifying a parsimonious set of discriminating genes among different spatial domains. Moreover, BNPSpace incorporates spatial information through a Markov random field prior model, encouraging a smooth and biologically meaningful partition pattern.

Adaptive importance sampling (AIS) methods provide a useful alternative to Markov Chain Monte Carlo (MCMC) algorithms for performing inference of intractable distributions. Population Monte Carlo (PMC) algorithms constitute a family of AIS approaches which adapt the proposal distributions iteratively to improve the approximation of the target distribution. Recent work in this area primarily focuses on ameliorating the proposal adaptation procedure for high-dimensional applications. However, most of the AIS algorithms use simple proposal distributions for sampling, which might be inadequate in exploring target distributions with intricate geometries. In this work, we construct expressive proposal distributions in the AIS framework using normalizing flow, an appealing approach for modeling complex distributions. We use an iterative parameter update rule to enhance the approximation of the target distribution. Numerical experiments show that in high-dimensional settings, the proposed algorithm offers significantly improved performance compared to the existing techniques.

Machine learning models for speech emotion recognition (SER) can be trained for different tasks and are usually evaluated on the basis of a few available datasets per task. Tasks could include arousal, valence, dominance, emotional categories, or tone of voice. Those models are mainly evaluated in terms of correlation or recall, and always show some errors in their predictions. The errors manifest themselves in model behaviour, which can be very different along different dimensions even if the same recall or correlation is achieved by the model. This paper investigates behavior of speech emotion recognition models with a testing framework which requires models to fulfill conditions in terms of correctness, fairness, and robustness.

Logical frameworks are successful in modeling proof systems. Recently, CoLF extended the logical framework LF to support higher-order rational terms that enable adequate encoding of circular objects and derivations. In this paper, we propose CoLF$^\omega$ as an alternative interpretation of CoLF-style signatures where terms are taken to be all possibly infinitary terms that are consistent with a given signature. In particular, we propose the notion of productive B\"ohm trees, a particular kind of typed $\bot$-free B\"ohm trees that are closed under hereditary substitution. We show that the productive B\"ohm trees are capable of meta-encoding their own structure. Overall, we hope to establish CoLF$^\omega$ as a new formal framework for the encoding of infinitary regular and non-regular structures.

This paper proposes a fully scalable multi-agent reinforcement learning (MARL) approach for packet scheduling in conflict graphs, aiming to minimizing average packet delays. Each agent autonomously manages the schedule of a single link over one or multiple sub-bands, considering its own state and states of conflicting links. The problem can be conceptualized as a decentralized partially observable Markov decision process (Dec-POMDP). The proposed solution leverages an on-policy reinforcement learning algorithms multi-agent proximal policy optimization (MAPPO) within a multi-agent networked system, incorporating advanced recurrent structures in the neural network. The MARL design allows for fully decentralized training and execution, seamlessly scaling to very large networks. Extensive simulations across a diverse range of conflict graphs demonstrate that the proposed solution compares favorably to well-established schedulers in terms of both throughput and delay under various traffic conditions.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司