亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Forward gradient learning computes a noisy directional gradient and is a biologically plausible alternative to backprop for learning deep neural networks. However, the standard forward gradient algorithm, when applied naively, suffers from high variance when the number of parameters to be learned is large. In this paper, we propose a series of architectural and algorithmic modifications that together make forward gradient learning practical for standard deep learning benchmark tasks. We show that it is possible to substantially reduce the variance of the forward gradient estimator by applying perturbations to activations rather than weights. We further improve the scalability of forward gradient by introducing a large number of local greedy loss functions, each of which involves only a small number of learnable parameters, and a new MLPMixer-inspired architecture, LocalMixer, that is more suitable for local learning. Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.

相關內容

In Offline Model Learning for Planning and in Offline Reinforcement Learning, the limited data set hinders the estimate of the Value function of the relative Markov Decision Process (MDP). Consequently, the performance of the obtained policy in the real world is bounded and possibly risky, especially when the deployment of a wrong policy can lead to catastrophic consequences. For this reason, several pathways are being followed with the scope of reducing the model error (or the distributional shift between the learned model and the true one) and, more broadly, obtaining risk-aware solutions with respect to model uncertainty. But when it comes to the final application which baseline should a practitioner choose? In an offline context where computational time is not an issue and robustness is the priority we propose Exploitation vs Caution (EvC), a paradigm that (1) elegantly incorporates model uncertainty abiding by the Bayesian formalism, and (2) selects the policy that maximizes a risk-aware objective over the Bayesian posterior between a fixed set of candidate policies provided, for instance, by the current baselines. We validate EvC with state-of-the-art approaches in different discrete, yet simple, environments offering a fair variety of MDP classes. In the tested scenarios EvC manages to select robust policies and hence stands out as a useful tool for practitioners that aim to apply offline planning and reinforcement learning solvers in the real world.

Gaussian processes (GPs) are typically criticised for their unfavourable scaling in both computational and memory requirements. For large datasets, sparse GPs reduce these demands by conditioning on a small set of inducing variables designed to summarise the data. In practice however, for large datasets requiring many inducing variables, such as low-lengthscale spatial data, even sparse GPs can become computationally expensive, limited by the number of inducing variables one can use. In this work, we propose a new class of inter-domain variational GP, constructed by projecting a GP onto a set of compactly supported B-spline basis functions. The key benefit of our approach is that the compact support of the B-spline basis functions admits the use of sparse linear algebra to significantly speed up matrix operations and drastically reduce the memory footprint. This allows us to very efficiently model fast-varying spatial phenomena with tens of thousands of inducing variables, where previous approaches failed.

We propose a new data-driven approach for learning the fundamental solutions (Green's functions) of various linear partial differential equations (PDEs) given sample pairs of input-output functions. Building off the theory of functional linear regression (FLR), we estimate the best-fit Green's function and bias term of the fundamental solution in a reproducing kernel Hilbert space (RKHS) which allows us to regularize their smoothness and impose various structural constraints. We derive a general representer theorem for operator RKHSs to approximate the original infinite-dimensional regression problem by a finite-dimensional one, reducing the search space to a parametric class of Green's functions. In order to study the prediction error of our Green's function estimator, we extend prior results on FLR with scalar outputs to the case with functional outputs. Finally, we demonstrate our method on several linear PDEs including the Poisson, Helmholtz, Schr\"{o}dinger, Fokker-Planck, and heat equation. We highlight its robustness to noise as well as its ability to generalize to new data with varying degrees of smoothness and mesh discretization without any additional training.

The Transformer is a highly successful deep learning model that has revolutionised the world of artificial neural networks, first in natural language processing and later in computer vision. This model is based on the attention mechanism and is able to capture complex semantic relationships between a variety of patterns present in the input data. Precisely because of these characteristics, the Transformer has recently been exploited for time series forecasting problems, assuming its natural adaptability to the domain of continuous numerical series. Despite the acclaimed results in the literature, some works have raised doubts about the robustness of this approach. In this paper, we further investigate the effectiveness of Transformer-based models applied to the domain of time series forecasting, demonstrate their limitations, and propose a set of alternative models that are better performing and significantly less complex. In particular, we empirically show how simplifying this forecasting model almost always leads to an improvement, reaching the state of the art among Transformer-based architectures. We also propose shallow models without the attention mechanism, which compete with the overall state of the art in long time series forecasting, and demonstrate their ability to accurately predict extremely long windows. We show how it is always necessary to use a simple baseline to verify the effectiveness of one's models, and finally we conclude the paper with a reflection on recent research paths and the desire to follow trends and apply the latest model even where it may not be necessary.

There is a growing literature on the study of large-width properties of deep Gaussian neural networks (NNs), i.e. deep NNs with Gaussian-distributed parameters or weights, and Gaussian stochastic processes. Motivated by some empirical and theoretical studies showing the potential of replacing Gaussian distributions with Stable distributions, namely distributions with heavy tails, in this paper we investigate large-width properties of deep Stable NNs, i.e. deep NNs with Stable-distributed parameters. For sub-linear activation functions, a recent work has characterized the infinitely wide limit of a suitable rescaled deep Stable NN in terms of a Stable stochastic process, both under the assumption of a ``joint growth" and under the assumption of a ``sequential growth" of the width over the NN's layers. Here, assuming a ``sequential growth" of the width, we extend such a characterization to a general class of activation functions, which includes sub-linear, asymptotically linear and super-linear functions. As a novelty with respect to previous works, our results rely on the use of a generalized central limit theorem for heavy tails distributions, which allows for an interesting unified treatment of infinitely wide limits for deep Stable NNs. Our study shows that the scaling of Stable NNs and the stability of their infinitely wide limits may depend on the choice of the activation function, bringing out a critical difference with respect to the Gaussian setting.

Estimating optimal dynamic policies from offline data is a fundamental problem in dynamic decision making. In the context of causal inference, the problem is known as estimating the optimal dynamic treatment regime. Even though there exists a plethora of methods for estimation, constructing confidence intervals for the value of the optimal regime and structural parameters associated with it is inherently harder, as it involves non-linear and non-differentiable functionals of un-known quantities that need to be estimated. Prior work resorted to sub-sample approaches that can deteriorate the quality of the estimate. We show that a simple soft-max approximation to the optimal treatment regime, for an appropriately fast growing temperature parameter, can achieve valid inference on the truly optimal regime. We illustrate our result for a two-period optimal dynamic regime, though our approach should directly extend to the finite horizon case. Our work combines techniques from semi-parametric inference and $g$-estimation, together with an appropriate triangular array central limit theorem, as well as a novel analysis of the asymptotic influence and asymptotic bias of softmax approximations.

The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.

Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司