We present a novel Graph-based debiasing Algorithm for Underreported Data (GRAUD) aiming at an efficient joint estimation of event counts and discovery probabilities across spatial or graphical structures. This innovative method provides a solution to problems seen in fields such as policing data and COVID-$19$ data analysis. Our approach avoids the need for strong priors typically associated with Bayesian frameworks. By leveraging the graph structures on unknown variables $n$ and $p$, our method debiases the under-report data and estimates the discovery probability at the same time. We validate the effectiveness of our method through simulation experiments and illustrate its practicality in one real-world application: police 911 calls-to-service data.
In this paper, we propose a novel generative model that utilizes a conditional Energy-Based Model (EBM) for enhancing Variational Autoencoder (VAE), termed Energy-Calibrated VAE (EC-VAE). Specifically, VAEs often suffer from blurry generated samples due to the lack of a tailored training on the samples generated in the generative direction. On the other hand, EBMs can generate high-quality samples but require expensive Markov Chain Monte Carlo (MCMC) sampling. To address these issues, we introduce a conditional EBM for calibrating the generative direction of VAE during training, without requiring it for the generation at test time. In particular, we train EC-VAE upon both the input data and the calibrated samples with adaptive weight to enhance efficacy while avoiding MCMC sampling at test time. Furthermore, we extend the calibration idea of EC-VAE to variational learning and normalizing flows, and apply EC-VAE to an additional application of zero-shot image restoration via neural transport prior and range-null theory. We evaluate the proposed method with two applications, including image generation and zero-shot image restoration, and the experimental results show that our method achieves the state-of-the-art performance over single-step non-adversarial generation. Our code is available at //github.com/DJ-LYH/EC-VAE.
Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is a cutting-edge concept for the sixth-generation (6G) wireless networks. In this letter, we propose a novel system that incorporates STAR-RIS with simultaneous wireless information and power transfer (SWIPT) using rate splitting multiple access (RSMA). The proposed system facilitates communication from a multi-antenna base station (BS) to single-antenna users in a downlink transmission. The BS concurrently sends energy and information signals to multiple energy harvesting receivers (EHRs) and information data receivers (IDRs) with the support of a deployed STAR-RIS. Furthermore, a multi-objective optimization is introduced to strike a balance between users' sum rate and the total harvested energy. To achieve this, an optimization problem is formulated to optimize the energy/information beamforming vectors at the BS, the phase shifts at the STAR-RIS, and the common message rate. Subsequently, we employ a meta deep deterministic policy gradient (Meta-DDPG) approach to solve the complex problem. Simulation results validate that the proposed algorithm significantly enhances both data rate and harvested energy in comparison to conventional DDPG.
In this work, maximum sum-rank distance (MSRD) codes and linearized Reed-Solomon codes are extended to finite chain rings. It is proven that linearized Reed-Solomon codes are MSRD over finite chain rings, extending the known result for finite fields. For the proof, several results on the roots of skew polynomials are extended to finite chain rings. These include the existence and uniqueness of minimum-degree annihilator skew polynomials and Lagrange interpolator skew polynomials. A general cubic-complexity sum-rank Welch-Berlekamp decoder and a quadratic-complexity sum-rank syndrome decoder (under some assumptions) are then provided over finite chain rings. The latter also constitutes the first known syndrome decoder for linearized Reed--Solomon codes over finite fields. Finally, applications in Space-Time Coding with multiple fading blocks and physical-layer multishot Network Coding are discussed.
Our paper proposes an innovative approach for modeling Fluid-Structure Interaction (FSI). Our method combines both traditional monolithic and partitioned approaches, creating a hybrid solution that facilitates FSI. At each time iteration, the solid mesh is immersed within a fluid-solid mesh, all while maintaining its independent Lagrangian hyperelastic solver. The Eulerian mesh encompasses both the fluid and solid components and accommodates various physical phenomena. We enhance the interaction between solid and fluid through anisotropic mesh adaptation and the Level-Set methods. This enables a more accurate representation of their interaction. Together, these components constitute the Adaptive Immersed Mesh Method (AIMM). For both solvers, we utilize the Variational Multi-Scale (VMS) method, mitigating potential spurious oscillations common with piecewise linear tetrahedral elements. The framework operates in 3D with parallel computing capabilities. Our methods accuracy, robustness, and capabilities are assessed through a series of 2D numerical problems. Furthermore, we present various three-dimensional test cases and compare their results to experimental data.
In this paper, we introduce the maximum casual entropy Inverse Reinforcement Learning (IRL) problem for discrete-time mean-field games (MFGs) under an infinite-horizon discounted-reward optimality criterion. The state space of a typical agent is finite. Our approach begins with a comprehensive review of the maximum entropy IRL problem concerning deterministic and stochastic Markov decision processes (MDPs) in both finite and infinite-horizon scenarios. Subsequently, we formulate the maximum casual entropy IRL problem for MFGs - a non-convex optimization problem with respect to policies. Leveraging the linear programming formulation of MDPs, we restructure this IRL problem into a convex optimization problem and establish a gradient descent algorithm to compute the optimal solution with a rate of convergence. Finally, we present a new algorithm by formulating the MFG problem as a generalized Nash equilibrium problem (GNEP), which is capable of computing the mean-field equilibrium (MFE) for the forward RL problem. This method is employed to produce data for a numerical example. We note that this novel algorithm is also applicable to general MFE computations.
Network slicing is a crucial enabler and a trend for the Next Generation Mobile Network (NGMN) and various other new systems like the Internet of Vehicles (IoV) and Industrial IoT (IIoT). Orchestration and machine learning are key elements with a crucial role in the network-slicing processes since the NS process needs to orchestrate resources and functionalities, and machine learning can potentially optimize the orchestration process. However, existing network-slicing architectures lack the ability to define intelligent approaches to orchestrate features and resources in the slicing process. This paper discusses machine learning-based orchestration of features and capabilities in network slicing architectures. Initially, the slice resource orchestration and allocation in the slicing planning, configuration, commissioning, and operation phases are analyzed. In sequence, we highlight the need for optimized architectural feature orchestration and recommend using ML-embed agents, federated learning intrinsic mechanisms for knowledge acquisition, and a data-driven approach embedded in the network slicing architecture. We further develop an architectural features orchestration case embedded in the SFI2 network slicing architecture. An attack prevention security mechanism is developed for the SFI2 architecture using distributed embedded and cooperating ML agents. The case presented illustrates the architectural feature's orchestration process and benefits, highlighting its importance for the network slicing process.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.