亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we discuss the numerical solution of elliptic distributed optimal control problems with state or control constraints when the control is considered in the energy norm. As in the unconstrained case we can relate the regularization parameter and the finite element mesh size in order to ensure an optimal order of convergence which only depends on the regularity of the given target, also including discontinuous target functions. While in most cases, state or control constraints are discussed for the more common $L^2$ regularization, much less is known in the case of energy regularizations. But in this case, and for both control and state constraints, we can formulate first kind variational inequalities to determine the unknown state, from wich we can compute the control in a post processing step. Related variational inequalities also appear in obstacle problems, and are well established both from a mathematical and a numerical analysis point of view. Numerical results confirm the applicability and accuracy of the proposed approach.

相關內容

Materials language processing (MLP) is one of the key facilitators of materials science research, as it enables the extraction of structured information from massive materials science literature. Prior works suggested high-performance MLP models for text classification, named entity recognition (NER), and extractive question answering (QA), which require complex model architecture, exhaustive fine-tuning and a large number of human-labelled datasets. In this study, we develop generative pretrained transformer (GPT)-enabled pipelines where the complex architectures of prior MLP models are replaced with strategic designs of prompt engineering. First, we develop a GPT-enabled document classification method for screening relevant documents, achieving comparable accuracy and reliability compared to prior models, with only small dataset. Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance on most of entities in three open datasets. Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations. While our findings confirm the potential of GPT-enabled MLP models as well as their value in terms of reliability and practicability, our scientific methods and systematic approach are applicable to any materials science domain to accelerate the information extraction of scientific literature.

In this paper, we study a numerical artifact of solving the nonlinear shallow water equations with a discontinuous bottom topography. For various first-order schemes, the numerical solution of the momentum will form a spurious spike at the discontinuous points of the bottom, which should not exist in the exact solution. The height of the spike cannot be reduced even after the mesh is refined. For subsonic problems, this numerical artifact may cause the wrong convergence to a function far away from the exact solution. To explain the formation of the spurious spike, we perform a convergence analysis by proving a Lax--Wendroff type theorem. It is shown that the spurious spike is caused by the numerical viscosity in the computation of the water height at the discontinuous bottom. The height of the spike is proportional to the magnitude of the viscosity constant in the Lax--Friedrichs flux. Motivated by this conclusion, we propose a modified scheme by adopting the central flux at the bottom discontinuity in the equation of mass conservation, and show that this numerical artifact can be removed in many cases. For various numerical tests with nontransonic Riemann solutions, we observe that the modified scheme is able to retrieve the correct convergence.

In this paper, we introduce several geometric characterizations for strong minima of optimization problems. Applying these results to nuclear norm minimization problems allows us to obtain new necessary and sufficient quantitative conditions for this important property. Our characterizations for strong minima are weaker than the Restricted Injectivity and Nondegenerate Source Condition, which are usually used to identify solution uniqueness of nuclear norm minimization problems. Consequently, we obtain the minimum (tight) bound on the number of measurements for (strong) exact recovery of low-rank matrices.

The DPG method with optimal test functions for solving linear quadratic optimal control problems with control constraints is studied. We prove existence of a unique optimal solution of the nonlinear discrete problem and characterize it through first order optimality conditions. Furthermore, we systematically develop a priori as well as a posteriori error estimates. Our proposed method can be applied to a wide range of constrained optimal control problems subject to, e.g., scalar second-order PDEs and the Stokes equations. Numerical experiments that illustrate our theoretical findings are presented.

This paper develops power series expansions of a general class of moment functions, including transition densities and option prices, of continuous-time Markov processes, including jump--diffusions. The proposed expansions extend the ones in Kristensen and Mele (2011) to cover general Markov processes. We demonstrate that the class of expansions nests the transition density and option price expansions developed in Yang, Chen, and Wan (2019) and Wan and Yang (2021) as special cases, thereby connecting seemingly different ideas in a unified framework. We show how the general expansion can be implemented for fully general jump--diffusion models. We provide a new theory for the validity of the expansions which shows that series expansions are not guaranteed to converge as more terms are added in general. Thus, these methods should be used with caution. At the same time, the numerical studies in this paper demonstrate good performance of the proposed implementation in practice when a small number of terms are included.

This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.

This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome's fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity.

We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators.

In this paper, we introduce a novel numerical approach for approximating the SIR model in epidemiology. Our method enhances the existing linearization procedure by incorporating a suitable relaxation term to tackle the transcendental equation of nonlinear type. Developed within the continuous framework, our relaxation method is explicit and easy to implement, relying on a sequence of linear differential equations. This approach yields accurate approximations in both discrete and analytical forms. Through rigorous analysis, we prove that, with an appropriate choice of the relaxation parameter, our numerical scheme is non-negativity-preserving and globally strongly convergent towards the true solution. These theoretical findings have not received sufficient attention in various existing SIR solvers. We also extend the applicability of our relaxation method to handle some variations of the traditional SIR model. Finally, we present numerical examples using simulated data to demonstrate the effectiveness of our proposed method.

This paper derives a discrete dual problem for a prototypical hybrid high-order method for convex minimization problems. The discrete primal and dual problem satisfy a weak convex duality that leads to a priori error estimates with convergence rates under additional smoothness assumptions. This duality holds for general polytopal meshes and arbitrary polynomial degree of the discretization. A nouvelle postprocessing is proposed and allows for a~posteriori error estimates on simplicial meshes using primal-dual techniques. This motivates an adaptive mesh-refining algorithm, which performs superiorly compared to uniform mesh refinements.

北京阿比特科技有限公司