亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the problem of controller synthesis of signal temporal logic (STL) specifications for large-scale multi-agent systems, where the agents are dynamically coupled and subject to collaborative tasks. A compositional framework based on continuous-time assume-guarantee contracts is developed to break the complex and large synthesis problem into subproblems of manageable sizes. We first show how to formulate the collaborative STL tasks as assume-guarantee contracts by leveraging the idea of funnel-based control. The concept of contracts is used to establish our compositionality result, which allows us to guarantee the satisfaction of a global contract by the multi-agent system when all agents satisfy their local contracts. Then, a closed-form continuous-time feedback controller is designed to enforce local contracts over the agents in a distributed manner, which further guarantees the global task satisfaction based on the compositionality result. Finally, the effectiveness of our results is demonstrated by two numerical examples.

相關內容

This paper presents the utilization of advanced methodologies in aerial manipulation to address meaningful industrial applications and develop versatile ultrasonic Non-Destructive Testing (NDT) technologies with aerial robots. The primary objectives of this work are to enable multi-point measurements through sliding without re-approaching the work surface, and facilitate the representation of material thickness with B and C scans via dynamic scanning in arbitrary directions (i.e. omnidirections). To accomplish these objectives, a payload that can slide in omnidirections (here we call the omni-sliding payload) is designed for an over-actuated aerial vehicle, ensuring truly omnidirectional sliding mobility while exerting consistent forces in contact with a flat work surface. The omni-sliding payload is equipped with an omniwheel-based active end-effector and an Electro Magnetic Acoustic Transducer (EMAT). Furthermore, to ensure successful development of the designed payload and integration with the aerial vehicle, a comprehensive studying on contact conditions and system dynamics during active sliding is presented, and the derived system constraints are later used as guidelines for the hardware development and control setting. The proposed methods are validated through experiments, encompassing both the wall-sliding task and dynamic scanning for Ultrasonic Testing (UT), employing the aerial platform - Voliro T.

Contemporary large-scale visual language models (VLMs) exhibit strong representation capacities, making them ubiquitous for enhancing image and text understanding tasks. They are often trained in a contrastive manner on a large and diverse corpus of images and corresponding text captions scraped from the internet. Despite this, VLMs often struggle with compositional reasoning tasks which require a fine-grained understanding of the complex interactions of objects and their attributes. This failure can be attributed to two main factors: 1) Contrastive approaches have traditionally focused on mining negative examples from existing datasets. However, the mined negative examples might not be difficult for the model to discriminate from the positive. An alternative to mining would be negative sample generation 2) But existing generative approaches primarily focus on generating hard negative texts associated with a given image. Mining in the other direction, i.e., generating negative image samples associated with a given text has been ignored. To overcome both these limitations, we propose a framework that not only mines in both directions but also generates challenging negative samples in both modalities, i.e., images and texts. Leveraging these generative hard negative samples, we significantly enhance VLMs' performance in tasks involving multimodal compositional reasoning. Our code and dataset are released at //ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.

Significant improvements in end-to-end speech translation (ST) have been achieved through the application of multi-task learning. However, the extent to which auxiliary tasks are highly consistent with the ST task, and how much this approach truly helps, have not been thoroughly studied. In this paper, we investigate the consistency between different tasks, considering different times and modules. We find that the textual encoder primarily facilitates cross-modal conversion, but the presence of noise in speech impedes the consistency between text and speech representations. Furthermore, we propose an improved multi-task learning (IMTL) approach for the ST task, which bridges the modal gap by mitigating the difference in length and representation. We conduct experiments on the MuST-C dataset. The results demonstrate that our method attains state-of-the-art results. Moreover, when additional data is used, we achieve the new SOTA result on MuST-C English to Spanish task with 20.8% of the training time required by the current SOTA method.

We propose a framework for expressing and analyzing the Quality of Service (QoS) of message-passing systems using a choreographic model that consists of g-choreographies and Communicating Finite State machines (CFSMs). The following are our three main contributions: (I) an extension of CFSMs with non-functional contracts to specify quantitative constraints of local computations, (II) a dynamic temporal logic capable of expressing QoS, properties of systems relative to the g-choreography that specifies the communication protocol, (III) the semi-decidability of our logic which enables a bounded model-checking approach to verify QoS property of communicating systems.

Current dataset mask processing operations relies on interpolation algorithms that do not produce extra pixels, such as nearest neighbor (NN) interpolation, as opposed to algorithms that do produce extra pixels, like bicubic (BIC) or bilinear (BIL) interpolation. In our previous study, the author proposed an alternative approach to NN-based mask processing and evaluated its effects on deep learning training outcomes. In this study, the author evaluated the effects of both BIC-based image and mask processing and BIC-and-NN-based image and mask processing versus NN-based image and mask processing. The evaluation revealed that the BIC-BIC model/network was an 8.9578 % (with image size 256 x 256) and a 1.0496 % (with image size 384 x 384) increase of the NN-NN network compared to the NN-BIC network which was an 8.3127 % (with image size 256 x 256) and a 0.2887 % (with image size 384 x 384) increase of the NN-NN network.

The paper investigates the utility of text-to-image inpainting models for satellite image data. Two technical challenges of injecting structural guiding signals into the generative process as well as translating the inpainted RGB pixels to a wider set of MSI bands are addressed by introducing a novel inpainting framework based on StableDiffusion and ControlNet as well as a novel method for RGB-to-MSI translation. The results on a wider set of data suggest that the inpainting synthesized via StableDiffusion suffers from undesired artefacts and that a simple alternative of self-supervised internal inpainting achieves higher quality of synthesis.

Segmentation and tracking of unseen object instances in discrete frames pose a significant challenge in dynamic industrial robotic contexts, such as distribution warehouses. Here, robots must handle object rearrangement, including shifting, removal, and partial occlusion by new items, and track these items after substantial temporal gaps. The task is further complicated when robots encounter objects not learned in their training sets, which requires the ability to segment and track previously unseen items. Considering that continuous observation is often inaccessible in such settings, our task involves working with a discrete set of frames separated by indefinite periods during which substantial changes to the scene may occur. This task also translates to domestic robotic applications, such as rearrangement of objects on a table. To address these demanding challenges, we introduce new synthetic and real-world datasets that replicate these industrial and household scenarios. We also propose a novel paradigm for joint segmentation and tracking in discrete frames along with a transformer module that facilitates efficient inter-frame communication. The experiments we conduct show that our approach significantly outperforms recent methods. For additional results and videos, please visit \href{//sites.google.com/view/stow-corl23}{website}. Code and dataset will be released.

A cascadic tensor multigrid method and an economic cascadic tensor multigrid method is presented for solving the image restoration models. The methods use quadratic interpolation as prolongation operator to provide more accurate initial values for the next fine grid level, and constructs a preserving-edge-denoising operator to obtain better edges and remove noise. The experimental results show that the new methods not only improves computational efficiency but also achieve better restoration quality.

Cooperatively utilizing both ego-vehicle and infrastructure sensor data can significantly enhance autonomous driving perception abilities. However, the uncertain temporal asynchrony and limited communication conditions can lead to fusion misalignment and constrain the exploitation of infrastructure data. To address these issues in vehicle-infrastructure cooperative 3D (VIC3D) object detection, we propose the Feature Flow Net (FFNet), a novel cooperative detection framework. FFNet is a flow-based feature fusion framework that uses a feature flow prediction module to predict future features and compensate for asynchrony. Instead of transmitting feature maps extracted from still-images, FFNet transmits feature flow, leveraging the temporal coherence of sequential infrastructure frames. Furthermore, we introduce a self-supervised training approach that enables FFNet to generate feature flow with feature prediction ability from raw infrastructure sequences. Experimental results demonstrate that our proposed method outperforms existing cooperative detection methods while only requiring about 1/100 of the transmission cost of raw data and covers all latency in one model on the DAIR-V2X dataset. The code is available at \href{//github.com/haibao-yu/FFNet-VIC3D}{//github.com/haibao-yu/FFNet-VIC3D}.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司