Recently, there has been an increasing interest in automated prompt optimization based on reinforcement learning (RL). This approach offers important advantages, such as generating interpretable prompts and being compatible with black-box foundation models. However, the substantial prompt space size poses challenges for RL-based methods, often leading to suboptimal policy convergence. This paper introduces MultiPrompter, a new framework that views prompt optimization as a cooperative game between prompters which take turns composing a prompt together. Our cooperative prompt optimization effectively reduces the problem size and helps prompters learn optimal prompts. We test our method on the text-to-image task and show its ability to generate higher-quality images than baselines.
Various works have utilized deep reinforcement learning (DRL) to address the query optimization problem in database system. They either learn to construct plans from scratch in a bottom-up manner or guide the plan generation behavior of traditional optimizer using hints. While these methods have achieved some success, they face challenges in either low training efficiency or limited plan search space. To address these challenges, we introduce FOSS, a novel DRL-based framework for query optimization. FOSS initiates optimization from the original plan generated by a traditional optimizer and incrementally refines suboptimal nodes of the plan through a sequence of actions. Additionally, we devise an asymmetric advantage model to evaluate the advantage between two plans. We integrate it with a traditional optimizer to form a simulated environment. Leveraging this simulated environment, FOSS can bootstrap itself to rapidly generate a large amount of high-quality simulated experiences. FOSS then learns and improves its optimization capability from these simulated experiences. We evaluate the performance of FOSS on Join Order Benchmark, TPC-DS, and Stack Overflow. The experimental results demonstrate that FOSS outperforms the state-of-the-art methods in terms of latency performance and optimization time. Compared to PostgreSQL, FOSS achieves savings ranging from 15% to 83% in total latency across different benchmarks.
The promotion of large-scale applications of reinforcement learning (RL) requires efficient training computation. While existing parallel RL frameworks encompass a variety of RL algorithms and parallelization techniques, the excessively burdensome communication frameworks hinder the attainment of the hardware's limit for final throughput and training effects on a single desktop. In this paper, we propose Spreeze, a lightweight parallel framework for RL that efficiently utilizes a single desktop hardware resource to approach the throughput limit. We asynchronously parallelize the experience sampling, network update, performance evaluation, and visualization operations, and employ multiple efficient data transmission techniques to transfer various types of data between processes. The framework can automatically adjust the parallelization hyperparameters based on the computing ability of the hardware device in order to perform efficient large-batch updates. Based on the characteristics of the "Actor-Critic" RL algorithm, our framework uses dual GPUs to independently update the network of actors and critics in order to further improve throughput. Simulation results show that our framework can achieve up to 15,000Hz experience sampling and 370,000Hz network update frame rate using only a personal desktop computer, which is an order of magnitude higher than other mainstream parallel RL frameworks, resulting in a 73% reduction of training time. Our work on fully utilizing the hardware resources of a single desktop computer is fundamental to enabling efficient large-scale distributed RL training.
Click-through rate (CTR) prediction is a vital task in industry advertising systems. Most existing methods focus on the structure design of neural network for better accuracy and suffer from the data sparsity problem. Especially in industry advertising systems, the widely applied negative sample downsampling technique due to resource limitation worsens the problem, resulting in a decline in performance. In this paper, we propose \textbf{A}uxiliary Match \textbf{T}asks for enhancing \textbf{C}lick-\textbf{T}hrough \textbf{R}ate performance (AT4CTR) to alleviate the data sparsity problem. Specifically, we design two match tasks inspired by collaborative filtering to enhance the relevance between user and item. As the "click" action is a strong signal which indicates user's preference towards item directly, we make the first match task aim at pulling closer the representation between user and item regarding the positive samples. Since the user's past click behaviors can also be treated as the user him/herself, we apply the next item prediction as the second match task. For both the match tasks, we choose the InfoNCE in contrastive learning as their loss function. The two match tasks can provide meaningful training signals to speed up the model's convergence and alleviate the data sparsity. We conduct extensive experiments on a public dataset and a large-scale industry advertising dataset. The results demonstrate the effectiveness of the proposed auxiliary match tasks. AT4CTR has been deployed in the real industry advertising system and gains remarkable revenue.
Federated Learning (FL), a distributed machine learning technique has recently experienced tremendous growth in popularity due to its emphasis on user data privacy. However, the distributed computations of FL can result in constrained communication and drawn-out learning processes, necessitating the client-server communication cost optimization. The ratio of chosen clients and the quantity of local training passes are two hyperparameters that have a significant impact on FL performance. Due to different training preferences across various applications, it can be difficult for FL practitioners to manually select such hyperparameters. In our research paper, we introduce FedAVO, a novel FL algorithm that enhances communication effectiveness by selecting the best hyperparameters leveraging the African Vulture Optimizer (AVO). Our research demonstrates that the communication costs associated with FL operations can be substantially reduced by adopting AVO for FL hyperparameter adjustment. Through extensive evaluations of FedAVO on benchmark datasets, we show that FedAVO achieves significant improvement in terms of model accuracy and communication round, particularly with realistic cases of Non-IID datasets. Our extensive evaluation of the FedAVO algorithm identifies the optimal hyperparameters that are appropriately fitted for the benchmark datasets, eventually increasing global model accuracy by 6% in comparison to the state-of-the-art FL algorithms (such as FedAvg, FedProx, FedPSO, etc.).
We present DARLEI, a framework that combines evolutionary algorithms with parallelized reinforcement learning for efficiently training and evolving populations of UNIMAL agents. Our approach utilizes Proximal Policy Optimization (PPO) for individual agent learning and pairs it with a tournament selection-based generational learning mechanism to foster morphological evolution. By building on Nvidia's Isaac Gym, DARLEI leverages GPU accelerated simulation to achieve over 20x speedup using just a single workstation, compared to previous work which required large distributed CPU clusters. We systematically characterize DARLEI's performance under various conditions, revealing factors impacting diversity of evolved morphologies. For example, by enabling inter-agent collisions within the simulator, we find that we can simulate some multi-agent interactions between the same morphology, and see how it influences individual agent capabilities and long-term evolutionary adaptation. While current results demonstrate limited diversity across generations, we hope to extend DARLEI in future work to include interactions between diverse morphologies in richer environments, and create a platform that allows for coevolving populations and investigating emergent behaviours in them. Our source code is also made publicly at //saeejithnair.github.io/darlei.
Amid the ongoing advancements in Federated Learning (FL), a machine learning paradigm that allows collaborative learning with data privacy protection, personalized FL (pFL) has gained significant prominence as a research direction within the FL domain. Whereas traditional FL (tFL) focuses on jointly learning a global model, pFL aims to achieve a balance between the global and personalized objectives of each client in FL settings. To foster the pFL research community, we propose PFLlib, a comprehensive pFL algorithm library with an integrated evaluation platform. In PFLlib, We implement 34 state-of-the-art FL algorithms (including 7 classic tFL algorithms and 27 pFL algorithms) and provide various evaluation environments with three statistically heterogeneous scenarios and 14 datasets. At present, PFLlib has already gained 850 stars and 199 forks on GitHub.
As a key technology in 6G research, federated learning (FL) enables collaborative learning among multiple clients while ensuring individual data privacy. However, malicious attackers among the participating clients can intentionally tamper with the training data or the trained model, compromising the accuracy and trustworthiness of the system. To address this issue, in this paper, we propose a hierarchical audit-based FL (HiAudit-FL) framework, with the aim to enhance the reliability and security of the learning process. The hierarchical audit process includes two stages, namely model-audit and parameter-audit. In the model-audit stage, a low-overhead audit method is employed to identify suspicious clients. Subsequently, in the parameter-audit stage, a resource-consuming method is used to detect all malicious clients with higher accuracy among the suspicious ones. Specifically, we execute the model audit method among partial clients for multiple rounds, which is modeled as a partial observation Markov decision process (POMDP) with the aim to enhance the robustness and accountability of the decision-making in complex and uncertain environments. Meanwhile, we formulate the problem of identifying malicious attackers through a multi-round audit as an active sequential hypothesis testing problem and leverage a diffusion model-based AI-Enabled audit selection strategy (ASS) to decide which clients should be audited in each round. To accomplish efficient and effective audit selection, we design a DRL-ASS algorithm by incorporating the ASS in a deep reinforcement learning (DRL) framework. Our simulation results demonstrate that HiAudit-FL can effectively identify and handle potential malicious users accurately, with small system overhead.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.