亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding how changes in training data affect a trained model is critical to building trust in various stages of a machine learning pipeline: from cleaning poor-quality samples and tracking important ones to be collected during data preparation, to calibrating uncertainty of model prediction, to interpreting why certain behaviors of a model emerge during deployment. In this paper, we present a framework, Data2Model, for predicting the output model of a learning algorithm given the input data points. Specifically, Data2Model learns a parameterized function that takes a dataset $S$ as the input and predicts the model obtained by training on $S$. Despite the potential complexity of the underlying end-to-end training process being approximated, we show that a neural network-based set function class can successfully predict the trained model from its training data. We introduce novel global and local regularization techniques for preventing overfitting and rigorously characterize the expressive power of neural networks (NN) in approximating the end-to-end training process. We perform extensive empirical investigations and demonstrate that Data2Model gives rise to a wide range of applications that boost the interpretability and accountability of machine learning (ML), such as data valuation, data selection, memorization quantification, and model calibration.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 多樣性 · Weight · 泛化理論 · Machine Learning ·
2023 年 1 月 27 日

Foundation models are redefining how AI systems are built. Practitioners now follow a standard procedure to build their machine learning solutions: from a pre-trained foundation model, they fine-tune the weights on the target task of interest. So, the Internet is swarmed by a handful of foundation models fine-tuned on many diverse tasks: these individual fine-tunings exist in isolation without benefiting from each other. In our opinion, this is a missed opportunity, as these specialized models contain rich and diverse features. In this paper, we thus propose model ratatouille, a new strategy to recycle the multiple fine-tunings of the same foundation model on diverse auxiliary tasks. Specifically, we repurpose these auxiliary weights as initializations for multiple parallel fine-tunings on the target task; then, we average all fine-tuned weights to obtain the final model. This recycling strategy aims at maximizing the diversity in weights by leveraging the diversity in auxiliary tasks. Empirically, it improves the state of the art on the reference DomainBed benchmark for out-of-distribution generalization. Looking forward, this work contributes to the emerging paradigm of updatable machine learning where, akin to open-source software development, the community collaborates to reliably update machine learning models.

Likelihood-free inference involves inferring parameter values given observed data and a simulator model. The simulator is computer code which takes parameters, performs stochastic calculations, and outputs simulated data. In this work, we view the simulator as a function whose inputs are (1) the parameters and (2) a vector of pseudo-random draws. We attempt to infer all these inputs conditional on the observations. This is challenging as the resulting posterior can be high dimensional and involve strong dependence. We approximate the posterior using normalizing flows, a flexible parametric family of densities. Training data is generated by likelihood-free importance sampling with a large bandwidth value epsilon, which makes the target similar to the prior. The training data is "distilled" by using it to train an updated normalizing flow. The process is iterated, using the updated flow as the importance sampling proposal, and slowly reducing epsilon so the target becomes closer to the posterior. Unlike most other likelihood-free methods, we avoid the need to reduce data to low dimensional summary statistics, and hence can achieve more accurate results. We illustrate our method in two challenging examples, on queuing and epidemiology.

Precise load forecasting in buildings could increase the bill savings potential and facilitate optimized strategies for power generation planning. With the rapid evolution of computer science, data-driven techniques, in particular the Deep Learning models, have become a promising solution for the load forecasting problem. These models have showed accurate forecasting results; however, they need abundance amount of historical data to maintain the performance. Considering the new buildings and buildings with low resolution measuring equipment, it is difficult to get enough historical data from them, leading to poor forecasting performance. In order to adapt Deep Learning models for buildings with limited and scarce data, this paper proposes a Building-to-Building Transfer Learning framework to overcome the problem and enhance the performance of Deep Learning models. The transfer learning approach was applied to a new technique known as Transformer model due to its efficacy in capturing data trends. The performance of the algorithm was tested on a large commercial building with limited data. The result showed that the proposed approach improved the forecasting accuracy by 56.8% compared to the case of conventional deep learning where training from scratch is used. The paper also compared the proposed Transformer model to other sequential deep learning models such as Long-short Term Memory (LSTM) and Recurrent Neural Network (RNN). The accuracy of the transformer model outperformed other models by reducing the root mean square error to 0.009, compared to LSTM with 0.011 and RNN with 0.051.

Machine learning and deep learning play vital roles in predicting diseases in the medical field. Machine learning algorithms are widely classified as supervised, unsupervised, and reinforcement learning. This paper contains a detailed description of our experimental research work in that we used a supervised machine-learning algorithm to build our model for outbreaks of the novel Coronavirus that has spread over the whole world and caused many deaths, which is one of the most disastrous Pandemics in the history of the world. The people suffered physically and economically to survive in this lockdown. This work aims to understand better how machine learning, ensemble, and deep learning models work and are implemented in the real dataset. In our work, we are going to analyze the current trend or pattern of the coronavirus and then predict the further future of the covid-19 confirmed cases or new cases by training the past Covid-19 dataset by using the machine learning algorithm such as Linear Regression, Polynomial Regression, K-nearest neighbor, Decision Tree, Support Vector Machine and Random forest algorithm are used to train the model. The decision tree and the Random Forest algorithm perform better than SVR in this work. The performance of SVR and lasso regression are low in all prediction areas Because the SVR is challenging to separate the data using the hyperplane for this type of problem. So SVR mostly gives a lower performance in this problem. Ensemble (Voting, Bagging, and Stacking) and deep learning models(ANN) also predict well. After the prediction, we evaluated the model using MAE, MSE, RMSE, and MAPE. This work aims to find the trend/pattern of the covid-19.

Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively in a data privacy-preserving manner. However, the data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model severely biased to the head classes with the majority of the training samples. To alleviate this issue, decoupled training has recently been introduced to FL, considering it has achieved promising results in centralized long-tailed learning by re-balancing the biased classifier after the instance-balanced training. However, the current study restricts the capacity of decoupled training in federated long-tailed learning with a sub-optimal classifier re-trained on a set of pseudo features, due to the unavailability of a global balanced dataset in FL. In this work, in order to re-balance the classifier more effectively, we integrate the local real data with the global gradient prototypes to form the local balanced datasets, and thus re-balance the classifier during the local training. Furthermore, we introduce an extra classifier in the training phase to help model the global data distribution, which addresses the problem of contradictory optimization goals caused by performing classifier re-balancing locally. Extensive experiments show that our method consistently outperforms the existing state-of-the-art methods in various settings.

Modeling text-based time-series to make prediction about a future event or outcome is an important task with a wide range of applications. The standard approach is to train and test the model using the same input window, but this approach neglects the data collected in longer input windows between the prediction time and the final outcome, which are often available during training. In this study, we propose to treat this neglected text as privileged information available during training to enhance early prediction modeling through knowledge distillation, presented as Learning using Privileged tIme-sEries Text (LuPIET). We evaluate the method on clinical and social media text, with four clinical prediction tasks based on clinical notes and two mental health prediction tasks based on social media posts. Our results show LuPIET is effective in enhancing text-based early predictions, though one may need to consider choosing the appropriate text representation and windows for privileged text to achieve optimal performance. Compared to two other methods using transfer learning and mixed training, LuPIET offers more stable improvements over the baseline, standard training. As far as we are concerned, this is the first study to examine learning using privileged information for time-series in the NLP context.

Methods to certify the robustness of neural networks in the presence of input uncertainty are vital in safety-critical settings. Most certification methods in the literature are designed for adversarial or worst-case inputs, but researchers have recently shown a need for methods that consider random input noise. In this paper, we examine the setting where inputs are subject to random noise coming from an arbitrary probability distribution. We propose a robustness certification method that lower-bounds the probability that network outputs are safe. This bound is cast as a chance-constrained optimization problem, which is then reformulated using input-output samples to make the optimization constraints tractable. We develop sufficient conditions for the resulting optimization to be convex, as well as on the number of samples needed to make the robustness bound hold with overwhelming probability. We show for a special case that the proposed optimization reduces to an intuitive closed-form solution. Case studies on synthetic, MNIST, and CIFAR-10 networks experimentally demonstrate that this method is able to certify robustness against various input noise regimes over larger uncertainty regions than prior state-of-the-art techniques.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司