亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart--Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.

相關內容

In this paper, we propose multicontinuum splitting schemes for multiscale problems, focusing on a parabolic equation with a high-contrast coefficient. Using the framework of multicontinuum homogenization, we introduce spatially smooth macroscopic variables and decompose the multicontinuum solution space into two components to effectively separate the dynamics at different speeds (or the effects of contrast in high-contrast cases). By treating the component containing fast dynamics (or dependent on the contrast) implicitly and the component containing slow dynamics (or independent of the contrast) explicitly, we construct partially explicit time discretization schemes, which can reduce computational cost. The derived stability conditions are contrast-independent, provided the continua are chosen appropriately. Additionally, we discuss possible methods to obtain an optimized decomposition of the solution space, which relaxes the stability conditions while enhancing computational efficiency. A Rayleigh quotient problem in tensor form is formulated, and simplifications are achieved under certain assumptions. Finally, we present numerical results for various coefficient fields and different continua to validate our proposed approach. It can be observed that the multicontinuum splitting schemes enjoy high accuracy and efficiency.

In this work, we introduce and analyse discontinuous Galerkin (dG) methods for the drift-diffusion model. We explore two dG formulations: a classical interior penalty approach and a nodally bound-preserving method. Whilst the interior penalty method demonstrates well-posedness and convergence, it fails to guarantee non-negativity of the solution. To address this deficit, which is often important to ensure in applications, we employ a positivity-preserving method based on a convex subset formulation, ensuring the non-negativity of the solution at the Lagrange nodes. We validate our findings by summarising extensive numerical experiments, highlighting the novelty and effectiveness of our approach in handling the complexities of charge carrier transport.

The proposed two-dimensional geometrically exact beam element extends our previous work by including the effects of shear distortion, and also of distributed forces and moments acting along the beam. The general flexibility-based formulation exploits the kinematic equations combined with the inverted sectional equations and the integrated form of equilibrium equations. The resulting set of three first-order differential equations is discretized by finite differences and the boundary value problem is converted into an initial value problem using the shooting method. Due to the special structure of the governing equations, the scheme remains explicit even though the first derivatives are approximated by central differences, leading to high accuracy. The main advantage of the adopted approach is that the error can be efficiently reduced by refining the computational grid used for finite differences at the element level while keeping the number of global degrees of freedom low. The efficiency is also increased by dealing directly with the global centerline coordinates and sectional inclination with respect to global axes as the primary unknowns at the element level, thereby avoiding transformations between local and global coordinates. Two formulations of the sectional equations, referred to as the Reissner and Ziegler models, are presented and compared. In particular, stability of an axially loaded beam/column is investigated and the connections to the Haringx and Engesser stability theories are discussed. Both approaches are tested in a series of numerical examples, which illustrate (i) high accuracy with quadratic convergence when the spatial discretization is refined, (ii) easy modeling of variable stiffness along the element (such as rigid joint offsets), (iii) efficient and accurate characterization of the buckling and post-buckling behavior.

We develop the novel method of artificial barriers for scalar stochastic differential equations (SDEs) and use it to construct boundary-preserving numerical schemes for strong approximations of scalar SDEs, possibly with non-globally Lipschitz drift and diffusion coefficients, whose state-space is either bounded or half-bounded. The idea of artificial barriers is to augment the SDE with artificial barriers outside the state-space to not change the solution process, and then apply a boundary-preserving numerical scheme to the resulting reflected SDE (RSDE). This enables us to construct boundary-preserving numerical schemes with the same strong convergence rate as the strong convergence rate of the numerical scheme for the corresponding RSDE. Based on the method of artificial barriers, we construct two boundary-preserving schemes that we call the Artificial Barrier Euler-Maruyama (ABEM) scheme and the Artificial Barrier Euler-Peano (ABEP) scheme. We provide numerical experiments for the ABEM scheme and the numerical results agree with the obtained theoretical results.

In this paper we provide a matrix extension of the scalar binomial series under elliptical contoured models and real normed division algebras. The classical hypergeometric series ${}_{1}F_{0}^{\beta}(a;\mathbf{Z})={}_{1}^{k}P_{0}^{\beta,1}(1:a;\mathbf{Z})=|\mathbf{I}-\mathbf{Z}|^{-a}$ of Jack polynomials are now seen as an invariant generalized determinant with a series representation indexed by any elliptical generator function. In particular, a corollary emerges for a simple derivation of the central matrix variate beta type II distribution under elliptically contoured models in the unified real, complex, quaternions and octonions.

A numerical method ADER-DG with a local DG predictor for solving a DAE system has been developed, which was based on the formulation of ADER-DG methods using a local DG predictor for solving ODE and PDE systems. The basis functions were chosen in the form of Lagrange interpolation polynomials with nodal points at the roots of the Radau polynomials, which differs from the classical formulations of the ADER-DG method, where it is customary to use the roots of Legendre polynomials. It was shown that the use of this basis leads to A-stability and L1-stability in the case of using the DAE solver as ODE solver. The numerical method ADER-DG allows one to obtain a highly accurate numerical solution even on very coarse grids, with a step greater than the main characteristic scale of solution variation. The local discrete time solution can be used as a numerical solution of the DAE system between grid nodes, thereby providing subgrid resolution even in the case of very coarse grids. The classical test examples were solved by developed numerical method ADER-DG. With increasing index of the DAE system, a decrease in the empirical convergence orders p is observed. An unexpected result was obtained in the numerical solution of the stiff DAE system -- the empirical convergence orders of the numerical solution obtained using the developed method turned out to be significantly higher than the values expected for this method in the case of stiff problems. It turns out that the use of Lagrange interpolation polynomials with nodal points at the roots of the Radau polynomials is much better suited for solving stiff problems. Estimates showed that the computational costs of the ADER-DG method are approximately comparable to the computational costs of implicit Runge-Kutta methods used to solve DAE systems. Methods were proposed to reduce the computational costs of the ADER-DG method.

In this paper, we develop a multi-step estimation procedure to simultaneously estimate the varying-coefficient functions using a local-linear generalized method of moments (GMM) based on continuous moment conditions. To incorporate spatial dependence, the continuous moment conditions are first projected onto eigen-functions and then combined by weighted eigen-values, thereby, solving the challenges of using an inverse covariance operator directly. We propose an optimal instrument variable that minimizes the asymptotic variance function among the class of all local-linear GMM estimators, and it outperforms the initial estimates which do not incorporate the spatial dependence. Our proposed method significantly improves the accuracy of the estimation under heteroskedasticity and its asymptotic properties have been investigated. Extensive simulation studies illustrate the finite sample performance, and the efficacy of the proposed method is confirmed by real data analysis.

To solve many problems on graphs, graph traversals are used, the usual variants of which are the depth-first search and the breadth-first search. Implementing a graph traversal we consequently reach all vertices of the graph that belong to a connected component. The breadth-first search is the usual choice when constructing efficient algorithms for finding connected components of a graph. Methods of simple iteration for solving systems of linear equations with modified graph adjacency matrices and with the properly specified right-hand side can be considered as graph traversal algorithms. These traversal algorithms, generally speaking, turn out to be non-equivalent neither to the depth-first search nor the breadth-first search. The example of such a traversal algorithm is the one associated with the Gauss-Seidel method. For an arbitrary connected graph, to visit all its vertices, the algorithm requires not more iterations than that is required for BFS. For a large number of instances of the problem, fewer iterations will be required.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司