亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new deep learning method, named finite volume method (DFVM) to solve high-dimension partial differential equations (PDEs). The key idea of DFVM is that we construct a new loss function under the framework of the finite volume method. The weak formulation makes DFVM more feasible to solve general high dimensional PDEs defined on arbitrarily shaped domains. Numerical solutions obtained by DFVM also enjoy physical conservation property in the control volume of each sampling point, which is not available in other existing deep learning methods. Numerical results illustrate that DFVM not only reduces the computation cost but also obtains more accurate approximate solutions. Specifically, for high-dimensional linear and nonlinear elliptic PDEs, DFVM provides better approximations than DGM and WAN, by one order of magnitude. The relative error obtained by DFVM is slightly smaller than that obtained by PINN, but the computation cost of DFVM is an order of magnitude less than that of the PINN. For the time-dependent Black-Scholes equation, DFVM gives better approximations than PINN, by one order of magnitude.

相關內容

Many applications rely on solving time-dependent partial differential equations (PDEs) that include second derivatives. Summation-by-parts (SBP) operators are crucial for developing stable, high-order accurate numerical methodologies for such problems. Conventionally, SBP operators are tailored to the assumption that polynomials accurately approximate the solution, and SBP operators should thus be exact for them. However, this assumption falls short for a range of problems for which other approximation spaces are better suited. We recently addressed this issue and developed a theory for first-derivative SBP operators based on general function spaces, coined function-space SBP (FSBP) operators. In this paper, we extend the innovation of FSBP operators to accommodate second derivatives. The developed second-derivative FSBP operators maintain the desired mimetic properties of existing polynomial SBP operators while allowing for greater flexibility by being applicable to a broader range of function spaces. We establish the existence of these operators and detail a straightforward methodology for constructing them. By exploring various function spaces, including trigonometric, exponential, and radial basis functions, we illustrate the versatility of our approach. We showcase the superior performance of these non-polynomial FSBP operators over traditional polynomial-based operators for a suite of one- and two-dimensional problems, encompassing a boundary layer problem and the viscous Burgers' equation. The work presented here opens up possibilities for using second-derivative SBP operators based on suitable function spaces, paving the way for a wide range of applications in the future.

We investigate the problem of joint statistical estimation of several parameters for a stochastic differential equations driven by an additive fractional Brownian motion. Based on discrete-time observations of the model, we construct an estimator of the Hurst parameter, the diffusion parameter and the drift, which lies in a parametrised family of coercive drift coefficients. Our procedure is based on the assumption that the stationary distribution of the SDE and of its increments permits to identify the parameters of the model. Under this assumption, we prove consistency results and derive a rate of convergence for the estimator. Finally, we show that the identifiability assumption is satisfied in the case of a family of fractional Ornstein-Uhlenbeck processes and illustrate our results with some numerical experiments.

Linkage disequilibrium score regression (LDSC) has emerged as an essential tool for genetic and genomic analyses of complex traits, utilizing high-dimensional data derived from genome-wide association studies (GWAS). LDSC computes the linkage disequilibrium (LD) scores using an external reference panel, and integrates the LD scores with only summary data from the original GWAS. In this paper, we investigate LDSC within a fixed-effect data integration framework, underscoring its ability to merge multi-source GWAS data and reference panels. In particular, we take account of the genome-wide dependence among the high-dimensional GWAS summary statistics, along with the block-diagonal dependence pattern in estimated LD scores. Our analysis uncovers several key factors of both the original GWAS and reference panel datasets that determine the performance of LDSC. We show that it is relatively feasible for LDSC-based estimators to achieve asymptotic normality when applied to genome-wide genetic variants (e.g., in genetic variance and covariance estimation), whereas it becomes considerably challenging when we focus on a much smaller subset of genetic variants (e.g., in partitioned heritability analysis). Moreover, by modeling the disparities in LD patterns across different populations, we unveil that LDSC can be expanded to conduct cross-ancestry analyses using data from distinct global populations (such as European and Asian). We validate our theoretical findings through extensive numerical evaluations using real genetic data from the UK Biobank study.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

Stochastic gradient descent with momentum (SGDM) is the dominant algorithm in many optimization scenarios, including convex optimization instances and non-convex neural network training. Yet, in the stochastic setting, momentum interferes with gradient noise, often leading to specific step size and momentum choices in order to guarantee convergence, set aside acceleration. Proximal point methods, on the other hand, have gained much attention due to their numerical stability and elasticity against imperfect tuning. Their stochastic accelerated variants though have received limited attention: how momentum interacts with the stability of (stochastic) proximal point methods remains largely unstudied. To address this, we focus on the convergence and stability of the stochastic proximal point algorithm with momentum (SPPAM), and show that SPPAM allows a faster linear convergence to a neighborhood compared to the stochastic proximal point algorithm (SPPA) with a better contraction factor, under proper hyperparameter tuning. In terms of stability, we show that SPPAM depends on problem constants more favorably than SGDM, allowing a wider range of step size and momentum that lead to convergence.

This paper considers the problem of learning a single ReLU neuron with squared loss (a.k.a., ReLU regression) in the overparameterized regime, where the input dimension can exceed the number of samples. We analyze a Perceptron-type algorithm called GLM-tron (Kakade et al., 2011) and provide its dimension-free risk upper bounds for high-dimensional ReLU regression in both well-specified and misspecified settings. Our risk bounds recover several existing results as special cases. Moreover, in the well-specified setting, we provide an instance-wise matching risk lower bound for GLM-tron. Our upper and lower risk bounds provide a sharp characterization of the high-dimensional ReLU regression problems that can be learned via GLM-tron. On the other hand, we provide some negative results for stochastic gradient descent (SGD) for ReLU regression with symmetric Bernoulli data: if the model is well-specified, the excess risk of SGD is provably no better than that of GLM-tron ignoring constant factors, for each problem instance; and in the noiseless case, GLM-tron can achieve a small risk while SGD unavoidably suffers from a constant risk in expectation. These results together suggest that GLM-tron might be preferable to SGD for high-dimensional ReLU regression.

Recently, Meta-Auto-Decoder (MAD) was proposed as a novel reduced order model (ROM) for solving parametric partial differential equations (PDEs), and the best possible performance of this method can be quantified by the decoder width. This paper aims to provide a theoretical analysis related to the decoder width. The solution sets of several parametric PDEs are examined, and the upper bounds of the corresponding decoder widths are estimated. In addition to the elliptic and the parabolic equations on a fixed domain, we investigate the advection equations that present challenges for classical linear ROMs, as well as the elliptic equations with the computational domain shape as a variable PDE parameter. The resulting fast decay rates of the decoder widths indicate the promising potential of MAD in addressing these problems.

We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a $\mathcal{C}^2$ boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

北京阿比特科技有限公司