Due to the weakness of public key cryptosystems encounter of quantum computers, the need to provide a solution was emerged. The McEliece cryptosystem and its security equivalent, the Niederreiter cryptosystem, which are based on Goppa codes, are one of the solutions, but they are not practical due to their long key length. Several prior attempts to decrease the length of the public key in code-based cryptosystems involved substituting the Goppa code family with other code families. However, these efforts ultimately proved to be insecure. In 2016, the National Institute of Standards and Technology (NIST) called for proposals from around the world to standardize post-quantum cryptography (PQC) schemes to solve this issue. After receiving of various proposals in this field, the Classic McEliece cryptosystem, as well as the Hamming Quasi-Cyclic (HQC) and Bit Flipping Key Encapsulation (BIKE), chosen as code-based encryption category cryptosystems that successfully progressed to the final stage. This article proposes a method for developing a code-based public key cryptography scheme that is both simple and implementable. The proposed scheme has a much shorter public key length compared to the NIST finalist cryptosystems. The key length for the primary parameters of the McEliece cryptosystem (n=1024, k=524, t=50) ranges from 18 to 500 bits. The security of this system is at least as strong as the security of the Niederreiter cryptosystem. The proposed structure is based on the Niederreiter cryptosystem which exhibits a set of highly advantageous properties that make it a suitable candidate for implementation in all extant systems.
Aberrant respondents are common but yet extremely detrimental to the quality of social surveys or questionnaires. Recently, factor mixture models have been employed to identify individuals providing deceptive or careless responses. We propose a comprehensive factor mixture model that combines confirmatory and exploratory factor models to represent both the non-aberrant and aberrant components of the responses. The flexibility of the proposed solution allows for the identification of two of the most common aberant response styles, namely faking and careless responding. We validated our approach by means of two simulations and two case studies. The results indicate the effectiveness of the proposed model in handling with aberrant responses in social and behavioral surveys.
In Computational Fluid Dynamics (CFD), coarse mesh simulations offer computational efficiency but often lack precision. Applying conventional super-resolution to these simulations poses a significant challenge due to the fundamental contrast between downsampling high-resolution images and authentically emulating low-resolution physics. The former method conserves more of the underlying physics, surpassing the usual constraints of real-world scenarios. We propose a novel definition of super-resolution tailored for PDE-based problems. Instead of simply downsampling from a high-resolution dataset, we use coarse-grid simulated data as our input and predict fine-grid simulated outcomes. Employing a physics-infused UNet upscaling method, we demonstrate its efficacy across various 2D-CFD problems such as discontinuity detection in Burger's equation, Methane combustion, and fouling in Industrial heat exchangers. Our method enables the generation of fine-mesh solutions bypassing traditional simulation, ensuring considerable computational saving and fidelity to the original ground truth outcomes. Through diverse boundary conditions during training, we further establish the robustness of our method, paving the way for its broad applications in engineering and scientific CFD solvers.
Constrained optimization of the parameters of a simulator plays a crucial role in a design process. These problems become challenging when the simulator is stochastic, computationally expensive, and the parameter space is high-dimensional. One can efficiently perform optimization only by utilizing the gradient with respect to the parameters, but these gradients are unavailable in many legacy, black-box codes. We introduce the algorithm Scout-Nd (Stochastic Constrained Optimization for N dimensions) to tackle the issues mentioned earlier by efficiently estimating the gradient, reducing the noise of the gradient estimator, and applying multi-fidelity schemes to further reduce computational effort. We validate our approach on standard benchmarks, demonstrating its effectiveness in optimizing parameters highlighting better performance compared to existing methods.
We suggest the usage of algebraic subsets instead of subgroups in public-key cryptography. In particular, we present the subset version of two protocols introduced by Shpilrain and Ushakov with some examples in ascending HNN-extensions of free-abelian groups and discuss their resistance to length and distance based attacks. We also introduce several new group theoretic problems arising from this work.
We study the theoretical aspects of Reinforced Language Models (RLMs) from a bi-objective optimization perspective. Specifically, we consider the RLMs as a Pareto optimization problem that maximizes the two conflicting objectives, i.e., reward objective and likelihood objectives, simultaneously. Our main contribution consists of three parts. First, we establish the theoretical foundations of RLM as a Pareto optimization problem by presenting Reward Upper BOund (RUBO) and Pareto optimality. Our theoretical outcomes are supported by not only deductive proofs but also empirical results. Second, we propose Reward Dropout, a simple yet powerful method that guarantees to improve a bi-objective optimization of RLM. Lastly, we demonstrate that the Reward Dropout is consistently effective across five benchmark datasets and four benchmark LLMs, meaning that the Reward Dropout significantly improves the optimization performance of RLMs.
Unsupervised cross-domain action recognition aims at adapting the model trained on an existing labeled source domain to a new unlabeled target domain. Most existing methods solve the task by directly aligning the feature distributions of source and target domains. However, this would cause negative transfer during domain adaptation due to some negative training samples in both domains. In the source domain, some training samples are of low-relevance to target domain due to the difference in viewpoints, action styles, etc. In the target domain, there are some ambiguous training samples that can be easily classified as another type of action under the case of source domain. The problem of negative transfer has been explored in cross-domain object detection, while it remains under-explored in cross-domain action recognition. Therefore, we propose a Multi-modal Instance Refinement (MMIR) method to alleviate the negative transfer based on reinforcement learning. Specifically, a reinforcement learning agent is trained in both domains for every modality to refine the training data by selecting out negative samples from each domain. Our method finally outperforms several other state-of-the-art baselines in cross-domain action recognition on the benchmark EPIC-Kitchens dataset, which demonstrates the advantage of MMIR in reducing negative transfer.
Individuals and organizations cope with an always-growing amount of data, which is heterogeneous in its contents and formats. An adequate data management process yielding data quality and control over its lifecycle is a prerequisite to getting value out of this data and minimizing inherent risks related to multiple usages. Common data governance frameworks rely on people, policies, and processes that fall short of the overwhelming complexity of data. Yet, harnessing this complexity is necessary to achieve high-quality standards. The latter will condition any downstream data usage outcome, including generative artificial intelligence trained on this data. In this paper, we report our concrete experience establishing a simple, cost-efficient framework that enables metadata-driven, agile and (semi-)automated data governance (i.e. Data Governance 4.0). We explain how we implement and use this framework to integrate 25 years of clinical study data at an enterprise scale in a fully productive environment. The framework encompasses both methodologies and technologies leveraging semantic web principles. We built a knowledge graph describing avatars of data assets in their business context, including governance principles. Multiple ontologies articulated by an enterprise upper ontology enable key governance actions such as FAIRification, lifecycle management, definition of roles and responsibilities, lineage across transformations and provenance from source systems. This metadata model is the keystone to data governance 4.0: a semi-automatised data management process that considers the business context in an agile manner to adapt governance constraints to each use case and dynamically tune it based on business changes.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.