Constrained optimization of the parameters of a simulator plays a crucial role in a design process. These problems become challenging when the simulator is stochastic, computationally expensive, and the parameter space is high-dimensional. One can efficiently perform optimization only by utilizing the gradient with respect to the parameters, but these gradients are unavailable in many legacy, black-box codes. We introduce the algorithm Scout-Nd (Stochastic Constrained Optimization for N dimensions) to tackle the issues mentioned earlier by efficiently estimating the gradient, reducing the noise of the gradient estimator, and applying multi-fidelity schemes to further reduce computational effort. We validate our approach on standard benchmarks, demonstrating its effectiveness in optimizing parameters highlighting better performance compared to existing methods.
We introduce a novel approach that combines tactile estimation and control for in-hand object manipulation. By integrating measurements from robot kinematics and an image-based tactile sensor, our framework estimates and tracks object pose while simultaneously generating motion plans to control the pose of a grasped object. This approach consists of a discrete pose estimator that uses the Viterbi decoding algorithm to find the most likely sequence of object poses in a coarsely discretized grid, and a continuous pose estimator-controller to refine the pose estimate and accurately manipulate the pose of the grasped object. Our method is tested on diverse objects and configurations, achieving desired manipulation objectives and outperforming single-shot methods in estimation accuracy. The proposed approach holds potential for tasks requiring precise manipulation in scenarios where visual perception is limited, laying the foundation for closed-loop behavior applications such as assembly and tool use. Please see supplementary videos for real-world demonstration at //sites.google.com/view/texterity.
Multiobjective optimization is a hot topic in the artificial intelligence and operations research communities. The design and development of multiobjective methods is a frequent task for researchers and practitioners. As a result of this vibrant activity, a myriad of techniques have been proposed in the literature to date, demonstrating a significant effectiveness for dealing with situations coming from a wide range of real-world areas. This paper is focused on a multiobjective problem related to optimizing Infrastructure-as-Code deployment configurations. The system implemented for solving this problem has been coined as IaC Optimizer Platform (IOP). Despite the fact that a prototypical version of the IOP has been introduced in the literature before, a deeper analysis focused on the resolution of the problem is needed, in order to determine which is the most appropriate multiobjective method for embedding in the IOP. The main motivation behind the analysis conducted in this work is to enhance the IOP performance as much as possible. This is a crucial aspect of this system, deeming that it will be deployed in a real environment, as it is being developed as part of a H2020 European project. Going deeper, we resort in this paper to nine different evolutionary computation-based multiobjective algorithms. For assessing the quality of the considered solvers, 12 different problem instances have been generated based on real-world settings. Results obtained by each method after 10 independent runs have been compared using Friedman's non-parametric tests. Findings reached from the tests carried out lad to the creation of a multi-algorithm system, capable of applying different techniques according to the user's needs.
DistServe improves the performance of large language models (LLMs) serving by disaggregating the prefill and decoding computation. Existing LLM serving systems colocate the two phases and batch the computation of prefill and decoding across all users and requests. We find that this strategy not only leads to strong prefill-decoding interferences but also couples the resource allocation and parallelism plans for both phases. LLM applications often emphasize individual latency for each phase: time to first token (TTFT) for the prefill phase and time per output token (TPOT) of each request for the decoding phase. In the presence of stringent latency requirements, existing systems have to prioritize one latency over the other, or over-provision compute resources to meet both. DistServe assigns prefill and decoding computation to different GPUs, hence eliminating prefill-decoding interferences. Given the application's TTFT and TPOT requirements, DistServe co-optimizes the resource allocation and parallelism strategy tailored for each phase. DistServe also places the two phases according to the serving cluster's bandwidth to minimize the communication caused by disaggregation. As a result, DistServe significantly improves LLM serving performance in terms of the maximum rate that can be served within both TTFT and TPOT constraints on each GPU. Our evaluations show that on various popular LLMs, applications, and latency requirements, DistServe can serve 4.48x more requests or 10.2x tighter SLO, compared to state-of-the-art systems, while staying within latency constraints for > 90% of requests.
One of the most promising applications of quantum computers is to simulate quantum mechanical systems and deliver an advantage to classical computation by leveraging their inherent quantum behaviour. In this work, we present a new approach to achieve a noise tolerant Hamiltonian simulation algorithm for ground state energy estimation which also surmounts stochastic limitations most of its counterparts face. This algorithm is based on an adaptive set of fuzzy bisection searches to estimate the ground state energy digit by digit that can get to any arbitrary target precision. It builds upon the Quantum Eigenvalue Transformation of Unitary Matrices (QETU) algorithm and it delivers good approximations in simulations with quantum depolarizing probability up to 1e-3, particularly for the Transverse-Field Ising Model (TFIM). We ran simulations with different system Hamiltonians, system sizes and time evolution encoding methods on IBM Qiskit and we demonstrate the key results in this work, as well as compare the performance with other existing methods.
We study universal deepfake detection. Our goal is to detect synthetic images from a range of generative AI approaches, particularly from emerging ones which are unseen during training of the deepfake detector. Universal deepfake detection requires outstanding generalization capability. Motivated by recently proposed masked image modeling which has demonstrated excellent generalization in self-supervised pre-training, we make the first attempt to explore masked image modeling for universal deepfake detection. We study spatial and frequency domain masking in training deepfake detectors. Based on empirical analysis, we propose a novel deepfake detector via frequency masking. Our focus on frequency domain is different from the majority, which primarily target spatial domain detection. Our comparative analyses reveal substantial performance gains over existing methods. Code and models are publicly available.
In the era of large AI models, the complex architecture and vast parameters present substantial challenges for effective AI quality management (AIQM), e.g. large language model (LLM). This paper focuses on investigating the quality assurance of a specific LLM-based AI product--a ChatGPT-based sentiment analysis system. The study delves into stability issues related to both the operation and robustness of the expansive AI model on which ChatGPT is based. Experimental analysis is conducted using benchmark datasets for sentiment analysis. The results reveal that the constructed ChatGPT-based sentiment analysis system exhibits uncertainty, which is attributed to various operational factors. It demonstrated that the system also exhibits stability issues in handling conventional small text attacks involving robustness.
HUB format is an emerging technique to improve the hardware and time requirement when round to nearest is needed. On the other hand, RISC-V is an open-source ISA that many companies currently use in their designs. This paper presents a tailored floating point HUB adder implemented in the Sargantana RISC-V processor.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.