Previous research in speech enhancement has mostly focused on modeling time or time-frequency domain information alone, with little consideration given to the potential benefits of simultaneously modeling both domains. Since these domains contain complementary information, combining them may improve the performance of the model. In this letter, we propose a new approach to simultaneously model time and time-frequency domain information in a single model. We begin with the DPT-FSNet (causal version) model as a baseline and modify the encoder structure by replacing the original encoder with three separate encoders, each dedicated to modeling time-domain, real-imaginary, and magnitude information, respectively. Additionally, we introduce a feature fusion module both before and after the dual-path processing blocks to better leverage information from the different domains. The outcomes of our experiments reveal that the proposed approach achieves superior performance compared to existing state-of-the-art causal models, while preserving a relatively compact model size and low computational complexity.
Instruction tuning unlocks the superior capability of Large Language Models (LLM) to interact with humans. Furthermore, recent instruction-following datasets include images as visual inputs, collecting responses for image-based instructions. However, visual instruction-tuned models cannot comprehend textual details within images well. This work enhances the current visual instruction tuning pipeline with text-rich images (e.g., movie posters, book covers, etc.). Specifically, we first use publicly available OCR tools to collect results on 422K text-rich images from the LAION dataset. Moreover, we prompt text-only GPT-4 with recognized texts and image captions to generate 16K conversations, each containing question-answer pairs for text-rich images. By combining our collected data with previous multi-modal instruction-following data, our model, LLaVAR, substantially improves the LLaVA model's capability on text-based VQA datasets (up to 20% accuracy improvement) while achieving an accuracy of 91.42% on ScienceQA. The GPT-4-based instruction-following evaluation also demonstrates the improvement of our model on both natural images and text-rich images. Through qualitative analysis, LLaVAR shows promising interaction (e.g., reasoning, writing, and elaboration) skills with humans based on the latest real-world online content that combines text and images. We make our code/data/models publicly available at //llavar.github.io/.
This work proposes a discretization of the acoustic wave equation with possibly oscillatory coefficients based on a superposition of discrete solutions to spatially localized subproblems computed with an implicit time discretization. Based on exponentially decaying entries of the global system matrices and an appropriate partition of unity, it is proved that the superposition of localized solutions is appropriately close to the solution of the (global) implicit scheme. It is thereby justified that the localized (and especially parallel) computation on multiple overlapping subdomains is reasonable. Moreover, a re-start is introduced after a certain amount of time steps to maintain a moderate overlap of the subdomains. Overall, the approach may be understood as a domain decomposition strategy (in space and time) that completely avoids inner iterations. Numerical examples are presented.
Decreased visibility, intensive noise, and biased color are the common problems existing in low-light images. These visual disturbances further reduce the performance of high-level vision tasks, such as object detection, and tracking. To address this issue, some image enhancement methods have been proposed to increase the image contrast. However, most of them are implemented only in the spatial domain, which can be severely influenced by noise signals while enhancing. Hence, in this work, we propose a novel residual recurrent multi-wavelet convolutional neural network R2-MWCNN learned in the frequency domain that can simultaneously increase the image contrast and reduce noise signals well. This end-to-end trainable network utilizes a multi-level discrete wavelet transform to divide input feature maps into distinct frequencies, resulting in a better denoise impact. A channel-wise loss function is proposed to correct the color distortion for more realistic results. Extensive experiments demonstrate that our proposed R2-MWCNN outperforms the state-of-the-art methods quantitively and qualitatively.
Hyperspectral images (HSI) captured from earth observing satellites and aircraft is becoming increasingly important for applications in agriculture, environmental monitoring, mining, etc. Due to the limited available hyperspectral datasets, the pixel-wise random sampling is the most commonly used training-test dataset partition approach, which has significant overlap between samples in training and test datasets. Furthermore, our experimental observations indicates that regions with larger overlap often exhibit higher classification accuracy. Consequently, the pixel-wise random sampling approach poses a risk of data leakage. Thus, we propose a block-wise sampling method to minimize the potential for data leakage. Our experimental findings also confirm the presence of data leakage in models such as 2DCNN. Further, We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, to address the challenges associated with hyperspectral image classifier that considers HSI as long sequential three-dimensional images. The model comprises two primary components: axial aggregation attention and multi-level spectral-spatial extraction. The axial aggregation attention mechanism effectively exploits the continuity and correlation among spectral bands at each pixel position in hyperspectral images, while aggregating spatial dimension features. This enables SaaFormer to maintain high precision even under block-wise sampling. The multi-level spectral-spatial extraction structure is designed to capture the sensitivity of different material components to specific spectral bands, allowing the model to focus on a broader range of spectral details. The results on six publicly available datasets demonstrate that our model exhibits comparable performance when using random sampling, while significantly outperforming other methods when employing block-wise sampling partition.
Recently, deep learning-based beamforming algorithms have shown promising performance in target speech extraction tasks. However, most systems do not fully utilize spatial information. In this paper, we propose a target speech extraction network that utilizes spatial information to enhance the performance of neural beamformer. To achieve this, we first use the UNet-TCN structure to model input features and improve the estimation accuracy of the speech pre-separation module by avoiding information loss caused by direct dimensionality reduction in other models. Furthermore, we introduce a multi-head cross-attention mechanism that enhances the neural beamformer's perception of spatial information by making full use of the spatial information received by the array. Experimental results demonstrate that our approach, which incorporates a more reasonable target mask estimation network and a spatial information-based cross-attention mechanism into the neural beamformer, effectively improves speech separation performance.
Continuum robots are promising candidates for interactive tasks in medical and industrial applications due to their unique shape, compliance, and miniaturization capability. Accurate and real-time shape sensing is essential for such tasks yet remains a challenge. Embedded shape sensing has high hardware complexity and cost, while vision-based methods require stereo setup and struggle to achieve real-time performance. This paper proposes the first eye-to-hand monocular approach to continuum robot shape sensing. Utilizing a deep encoder-decoder network, our method, MoSSNet, eliminates the computation cost of stereo matching and reduces requirements on sensing hardware. In particular, MoSSNet comprises an encoder and three parallel decoders to uncover spatial, length, and contour information from a single RGB image, and then obtains the 3D shape through curve fitting. A two-segment tendon-driven continuum robot is used for data collection and testing, demonstrating accurate (mean shape error of 0.91 mm, or 0.36% of robot length) and real-time (70 fps) shape sensing on real-world data. Additionally, the method is optimized end-to-end and does not require fiducial markers, manual segmentation, or camera calibration. Code and datasets will be made available at //github.com/ContinuumRoboticsLab/MoSSNet.
Streaming models are an essential component of real-time speech enhancement tools. The streaming regime constrains speech enhancement models to use only a tiny context of future information. As a result, the low-latency streaming setup is generally considered a challenging task and has a significant negative impact on the model's quality. However, the sequential nature of streaming generation offers a natural possibility for autoregression, that is, utilizing previous predictions while making current ones. The conventional method for training autoregressive models is teacher forcing, but its primary drawback lies in the training-inference mismatch that can lead to a substantial degradation in quality. In this study, we propose a straightforward yet effective alternative technique for training autoregressive low-latency speech enhancement models. We demonstrate that the proposed approach leads to stable improvement across diverse architectures and training scenarios.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.