J-UNIWARD is a popular steganography method for hiding secret messages in JPEG cover images. As a content-adaptive method, J-UNIWARD aims to embed into textured image regions where changes are difficult to detect. To this end, J-UNIWARD first assigns to each DCT coefficient an embedding cost calculated based on the image's Wavelet residual, and then uses a coding method that minimizes the cost while embedding the desired payload. Changing one DCT coefficient affects a 23x23 window of Wavelet coefficients. To speed up the costmap computation, the original implementation pre-computes the Wavelet residual and then considers per changed DCT coefficient a 23x23 window of the Wavelet residual. However, the implementation accesses a window accidentally shifted by one pixel to the bottom right. In this report, we evaluate the effect of this off-by-one error on the resulting costmaps. Some image blocks are over-priced while other image blocks are under-priced, but the difference is relatively small. The off-by-one error seems to make little difference for learning-based steganalysis.
Recent advances in Deep Neural Networks (DNNs) and sensor technologies are enabling autonomous driving systems (ADSs) with an ever-increasing level of autonomy. However, assessing their dependability remains a critical concern. State-of-the-art ADS testing approaches modify the controllable attributes of a simulated driving environment until the ADS misbehaves. Such approaches have two main drawbacks: (1) modifications to the simulated environment might not be easily transferable to the in-field test setting (e.g., changing the road shape); (2) environment instances in which the ADS is successful are discarded, despite the possibility that they could contain hidden driving conditions in which the ADS may misbehave. In this paper, we present GenBo (GENerator of BOundary state pairs), a novel test generator for ADS testing. GenBo mutates the driving conditions of the ego vehicle (position, velocity and orientation), collected in a failure-free environment instance, and efficiently generates challenging driving conditions at the behavior boundary (i.e., where the model starts to misbehave) in the same environment. We use such boundary conditions to augment the initial training dataset and retrain the DNN model under test. Our evaluation results show that the retrained model has up to 16 higher success rate on a separate set of evaluation tracks with respect to the original DNN model.
Neural reflectance models are capable of accurately reproducing the spatially-varying appearance of many real-world materials at different scales. However, existing methods have difficulties handling highly glossy materials. To address this problem, we introduce a new neural reflectance model which, compared with existing methods, better preserves not only specular highlights but also fine-grained details. To this end, we enhance the neural network performance by encoding input data to frequency space, inspired by NeRF, to better preserve the details. Furthermore, we introduce a gradient-based loss and employ it in multiple stages, adaptive to the progress of the learning phase. Lastly, we utilize an optional extension to the decoder network using the Inception module for more accurate yet costly performance. We demonstrate the effectiveness of our method using a variety of synthetic and real examples.
Face recognition (FR) models can be easily fooled by adversarial examples, which are crafted by adding imperceptible perturbations on benign face images. The existence of adversarial face examples poses a great threat to the security of society. In order to build a more sustainable digital nation, in this paper, we improve the transferability of adversarial face examples to expose more blind spots of existing FR models. Though generating hard samples has shown its effectiveness in improving the generalization of models in training tasks, the effectiveness of utilizing this idea to improve the transferability of adversarial face examples remains unexplored. To this end, based on the property of hard samples and the symmetry between training tasks and adversarial attack tasks, we propose the concept of hard models, which have similar effects as hard samples for adversarial attack tasks. Utilizing the concept of hard models, we propose a novel attack method called Beneficial Perturbation Feature Augmentation Attack (BPFA), which reduces the overfitting of adversarial examples to surrogate FR models by constantly generating new hard models to craft the adversarial examples. Specifically, in the backpropagation, BPFA records the gradients on pre-selected feature maps and uses the gradient on the input image to craft the adversarial example. In the next forward propagation, BPFA leverages the recorded gradients to add beneficial perturbations on their corresponding feature maps to increase the loss. Extensive experiments demonstrate that BPFA can significantly boost the transferability of adversarial attacks on FR.
Recent years have witnessed an explosion in the development of novel prediction-based attribution methods, which have slowly been supplanting older gradient-based methods to explain the decisions of deep neural networks. However, it is still not clear why prediction-based methods outperform gradient-based ones. Here, we start with an empirical observation: these two approaches yield attribution maps with very different power spectra, with gradient-based methods revealing more high-frequency content than prediction-based methods. This observation raises multiple questions: What is the source of this high-frequency information, and does it truly reflect decisions made by the system? Lastly, why would the absence of high-frequency information in prediction-based methods yield better explainability scores along multiple metrics? We analyze the gradient of three representative visual classification models and observe that it contains noisy information emanating from high-frequencies. Furthermore, our analysis reveals that the operations used in Convolutional Neural Networks (CNNs) for downsampling appear to be a significant source of this high-frequency content -- suggesting aliasing as a possible underlying basis. We then apply an optimal low-pass filter for attribution maps and demonstrate that it improves gradient-based attribution methods. We show that (i) removing high-frequency noise yields significant improvements in the explainability scores obtained with gradient-based methods across multiple models -- leading to (ii) a novel ranking of state-of-the-art methods with gradient-based methods at the top. We believe that our results will spur renewed interest in simpler and computationally more efficient gradient-based methods for explainability.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.
There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.