Grove is a concurrent separation logic library for verifying distributed systems. Grove is the first to handle time-based leases, including their interaction with reconfiguration, crash recovery, thread-level concurrency, and unreliable networks. This paper uses Grove to verify several distributed system components written in Go, including GroveKV, a realistic distributed multi-threaded key-value store. GroveKV supports reconfiguration, primary/backup replication, and crash recovery, and uses leases to execute read-only requests on any replica. GroveKV achieves high performance (67-73% of Redis on a single core), scales with more cores and more backup replicas (achieving about 2x the throughput when going from 1 to 3 servers), and can safely execute reads while reconfiguring.
Image super-resolution generation aims to generate a high-resolution image from its low-resolution image. However, more complex neural networks bring high computational costs and memory storage. It is still an active area for offering the promise of overcoming resolution limitations in many applications. In recent years, transformers have made significant progress in computer vision tasks as their robust self-attention mechanism. However, recent works on the transformer for image super-resolution also contain convolution operations. We propose a patch translator for image super-resolution (PTSR) to address this problem. The proposed PTSR is a transformer-based GAN network with no convolution operation. We introduce a novel patch translator module for regenerating the improved patches utilising multi-head attention, which is further utilised by the generator to generate the 2x and 4x super-resolution images. The experiments are performed using benchmark datasets, including DIV2K, Set5, Set14, and BSD100. The results of the proposed model is improved on an average for $4\times$ super-resolution by 21.66% in PNSR score and 11.59% in SSIM score, as compared to the best competitive models. We also analyse the proposed loss and saliency map to show the effectiveness of the proposed method.
Trained with an unprecedented scale of data, large language models (LLMs) like ChatGPT and GPT-4 exhibit the emergence of significant reasoning abilities from model scaling. Such a trend underscored the potential of training LLMs with unlimited language data, advancing the development of a universal embodied agent. In this work, we introduce the NavGPT, a purely LLM-based instruction-following navigation agent, to reveal the reasoning capability of GPT models in complex embodied scenes by performing zero-shot sequential action prediction for vision-and-language navigation (VLN). At each step, NavGPT takes the textual descriptions of visual observations, navigation history, and future explorable directions as inputs to reason the agent's current status, and makes the decision to approach the target. Through comprehensive experiments, we demonstrate NavGPT can explicitly perform high-level planning for navigation, including decomposing instruction into sub-goal, integrating commonsense knowledge relevant to navigation task resolution, identifying landmarks from observed scenes, tracking navigation progress, and adapting to exceptions with plan adjustment. Furthermore, we show that LLMs is capable of generating high-quality navigational instructions from observations and actions along a path, as well as drawing accurate top-down metric trajectory given the agent's navigation history. Despite the performance of using NavGPT to zero-shot R2R tasks still falling short of trained models, we suggest adapting multi-modality inputs for LLMs to use as visual navigation agents and applying the explicit reasoning of LLMs to benefit learning-based models.
The rapid development of intelligent transportation systems and connected vehicles has highlighted the need for secure and efficient key management systems (KMS). In this paper, we introduce VDKMS (Vehicular Decentralized Key Management System), a novel Decentralized Key Management System designed specifically as an infrastructure for Cellular Vehicular-to-Everything (V2X) networks, utilizing a blockchain-based approach. The proposed VDKMS addresses the challenges of secure communication, privacy preservation, and efficient key management in V2X scenarios. It integrates blockchain technology, Self-Sovereign Identity (SSI) principles, and Decentralized Identifiers (DIDs) to enable secure and trustworthy V2X applications among vehicles, infrastructures, and networks. We first provide a comprehensive overview of the system architecture, components, protocols, and workflows, covering aspects such as provisioning, registration, verification, and authorization. We then present a detailed performance evaluation, discussing the security properties and compatibility of the proposed solution, as well as a security analysis. Finally, we present potential applications in the vehicular ecosystem that can leverage the advantages of our approach.
The need to model and analyse dynamic systems operating over complex data is ubiquitous in AI and neighboring areas, in particular business process management. Analysing such data-aware systems is a notoriously difficult problem, as they are intrinsically infinite-state. Existing approaches work for specific datatypes, and/or limit themselves to the verification of safety properties. In this paper, we lift both such limitations, studying for the first time linear-time verification for so-called data-aware processes modulo theories (DMTs), from the foundational and practical point of view. The DMT model is very general, as it supports processes operating over variables that can store arbitrary types of data, ranging over infinite domains and equipped with domain-specific predicates. Specifically, we provide four contributions. First, we devise a semi-decision procedure for linear-time verification of DMTs, which works for a very large class of datatypes obeying to mild model-theoretic assumptions. The procedure relies on a unique combination of automata-theoretic and cover computation techniques to respectively deal with linear-time properties and datatypes. Second, we identify an abstract, semantic property that guarantees the existence of a faithful finite-state abstraction of the original system, and show that our method becomes a decision procedure in this case. Third, we identify concrete, checkable classes of systems that satisfy this property, generalising several results in the literature. Finally, we present an implementation and a first experimental evaluation.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.