Universal fault-tolerant quantum computers will require the use of efficient protocols to implement encoded operations necessary in the execution of algorithms. In this work, we show how SMT solvers can be used to automate the construction of Clifford circuits with certain fault-tolerance properties and apply our techniques to a fault-tolerant magic state preparation protocol. Part of the protocol requires converting magic states encoded in the color code to magic states encoded in the surface code. Since the teleportation step involves decoding a color code merged with a surface code, we develop a new decoding algorithm applicable to such codes.
Given a dataset of input states, measurements, and probabilities, is it possible to efficiently predict the measurement probabilities associated with a quantum circuit? Recent work of Caro and Datta (2020) studied the problem of PAC learning quantum circuits in an information theoretic sense, leaving open questions of computational efficiency. In particular, one candidate class of circuits for which an efficient learner might have been possible was that of Clifford circuits, since the corresponding set of states generated by such circuits, called stabilizer states, are known to be efficiently PAC learnable (Rocchetto 2018). Here we provide a negative result, showing that proper learning of CNOT circuits is hard for classical learners unless $\textsf{RP} = \textsf{NP}$. As the classical analogue and subset of Clifford circuits, this naturally leads to a hardness result for Clifford circuits as well. Additionally, we show that if $\textsf{RP} = \textsf{NP}$ then there would exist efficient proper learning algorithms for CNOT and Clifford circuits. By similar arguments, we also find that an efficient proper quantum learner for such circuits exists if and only if $\textsf{NP} \subseteq \textsf{RQP}$.
Quantum algorithms often apply classical operations, such as arithmetic or predicate checks, over a quantum superposition of classical data; these so-called oracles are often the largest components of a quantum program. To ease the construction of efficient, correct oracle functions, this paper presents VQO, a high-assurance framework implemented with the Coq proof assistant. The core of VQO is OQASM, the oracle quantum assembly language. OQASM operations move qubits between two different bases via the quantum Fourier transform, thus admitting important optimizations, but without inducing entanglement and the exponential blowup that comes with it. OQASM's design enabled us to prove correct VQO's compilers -- from a simple imperative language called OQIMP to OQASM, and from OQASM to SQIR, a general-purpose quantum assembly language -- and allowed us to efficiently test properties of OQASM programs using the QuickChick property-based testing framework. We have used VQO to implement a variety of arithmetic and geometric operators that are building blocks for important oracles, including those used in Shor's and Grover's algorithms. We found that VQO's QFT-based arithmetic oracles require fewer qubits, sometimes substantially fewer, than those constructed using "classical" gates; VQO's versions of the latter were nevertheless on par with or better than (in terms of both qubit and gate counts) oracles produced by Quipper, a state-of-the-art but unverified quantum programming platform.
This work presents a numerical formulation to model isotropic viscoelastic material behavior for membranes and thin shells. The surface and the shell theory are formulated within a curvilinear coordinate system, which allows the representation of general surfaces and deformations. The kinematics follow from Kirchhoff-Love theory and the discretization makes use of isogeometric shape functions. A multiplicative split of the surface deformation gradient is employed, such that an intermediate surface configuration is introduced. The surface metric and curvature of this intermediate configuration follow from the solution of nonlinear evolution laws - ordinary differential equations (ODEs) - that stem from a generalized viscoelastic solid model. The evolution laws are integrated numerically with the implicit Euler scheme and linearized within the Newton-Raphson scheme of the nonlinear finite element framework. The implementation of surface and bending viscosity is verified with the help of analytical solutions and shows ideal convergence behavior. The chosen numerical examples capture large deformations and typical viscoelasticity behavior, such as creep, relaxation, and strain rate dependence. It is shown that the proposed formulation can also be straightforwardly applied to model boundary viscoelasticity of 3D bodies.
We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the $L_1$-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our $L_1$-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for {\it randomized} algorithms robust to a white-box adversary. In particular, our results show that for all $p\ge 0$, there exists a constant $C_p>1$ such that any $C_p$-approximation algorithm for $F_p$ moment estimation in insertion-only streams with a white-box adversary requires $\Omega(n)$ space for a universe of size $n$. Similarly, there is a constant $C>1$ such that any $C$-approximation algorithm in an insertion-only stream for matrix rank requires $\Omega(n)$ space with a white-box adversary. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. (Abstract shortened to meet arXiv limits.)
In recent years, fuzz testing has benefited from increased computational power and important algorithmic advances, leading to systems that have discovered many critical bugs and vulnerabilities in production software. Despite these successes, not all applications can be fuzzed efficiently. In particular, stateful applications such as network protocol implementations are constrained by their low fuzzing throughput and the need to develop fuzzing harnesses that reset their state and isolate their side effects. In this paper, we present SnapFuzz, a novel fuzzing framework for network applications. SnapFuzz offers a robust architecture that transforms slow asynchronous network communication into fast synchronous communication, snapshots the target at the latest point at which it is safe to do so, speeds up all file operations by redirecting them to a custom in-memory filesystem, and removes the need for many fragile modifications, such as configuring time delays or writing clean-up scripts, together with several other improvements. Using SnapFuzz, we fuzzed five popular networking applications: LightFTP, TinyDTLS, Dnsmasq, LIVE555 and Dcmqrscp. We report impressive performance speedups of 62.8x, 41.2x, 30.6x, 24.6x, and 8.4x, respectively, with significantly simpler fuzzing harnesses in all cases. Through its performance advantage, SnapFuzz has also found 12 extra crashes compared to AFLNet in these applications.
Numerical solution of heterogeneous Helmholtz problems presents various computational challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness and scalability are key for practical and reliable solvers in large-scale applications, especially for large wave number problems. In this work we explore the use of a GenEO-type coarse space to build a two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free meshes, we observe robust convergence, iteration counts that do not increase with the wave number, and good scalability of our approach. We further provide results showing a favourable comparison with the DtN coarse space. Our numerical study shows promise that our solver methodology can be effective for challenging heterogeneous applications.
This paper studies the application of reconfigurable intelligent surface (RIS) to cooperative non-orthogonal multiple access (C-NOMA) networks with simultaneous wireless information and power transfer (SWIPT). We aim for maximizing the rate of the strong user with guaranteed weak user's quality of service (QoS) by jointly optimizing power splitting factors, beamforming coefficients, and RIS reflection coefficients in two transmission phases. The formulated problem is difficult to solve due to its complex and non-convex constraints. To tackle this challenging problem, we first use alternating optimization (AO) framework to transform it into three subproblems, and then use the penalty-based arithmetic-geometric mean approximation (PBAGM) algorithm and the successive convex approximation (SCA)-based method to solve them. Numerical results verify the superiority of the proposed algorithm over the baseline schemes.
Multiparty session types are designed to abstractly capture the structure of communication protocols and verify behavioural properties. One important such property is progress, i.e., the absence of deadlock. Distributed algorithms often resemble multiparty communication protocols. But proving their properties, in particular termination that is closely related to progress, can be elaborate. Since distributed algorithms are often designed to cope with faults, a first step towards using session types to verify distributed algorithms is to integrate fault-tolerance. We extend multiparty session types to cope with system failures such as unreliable communication and process crashes. Moreover, we augment the semantics of processes by failure patterns that can be used to represent system requirements (as, e.g., failure detectors). To illustrate our approach we analyse a variant of the well-known rotating coordinator algorithm by Chandra and Toueg. This technical report presents the proofs and some additional material to extend [30].
Universal fault-tolerant quantum computers will require the use of efficient protocols to implement encoded operations necessary in the execution of algorithms. In this work, we show how satisfiability modulo theories (SMT) solvers can be used to automate the construction of Clifford circuits with certain fault-tolerance properties and apply our techniques to a fault-tolerant magic state preparation protocol. Part of the protocol requires converting magic states encoded in the color code to magic states encoded in the surface code. Since the teleportation step involves decoding a color code merged with a surface code, we develop a new decoding algorithm applicable to such codes.
Synthesis of ergodic, stationary visual patterns is widely applicable in texturing, shape modeling, and digital content creation. The wide applicability of this technique thus requires the pattern synthesis approaches to be scalable, diverse, and authentic. In this paper, we propose an exemplar-based visual pattern synthesis framework that aims to model the inner statistics of visual patterns and generate new, versatile patterns that meet the aforementioned requirements. To this end, we propose an implicit network based on generative adversarial network (GAN) and periodic encoding, thus calling our network the Implicit Periodic Field Network (IPFN). The design of IPFN ensures scalability: the implicit formulation directly maps the input coordinates to features, which enables synthesis of arbitrary size and is computationally efficient for 3D shape synthesis. Learning with a periodic encoding scheme encourages diversity: the network is constrained to model the inner statistics of the exemplar based on spatial latent codes in a periodic field. Coupled with continuously designed GAN training procedures, IPFN is shown to synthesize tileable patterns with smooth transitions and local variations. Last but not least, thanks to both the adversarial training technique and the encoded Fourier features, IPFN learns high-frequency functions that produce authentic, high-quality results. To validate our approach, we present novel experimental results on various applications in 2D texture synthesis and 3D shape synthesis.