Federated learning with noisy labels (F-LNL) aims at seeking an optimal server model via collaborative distributed learning by aggregating multiple client models trained with local noisy or clean samples. On the basis of a federated learning framework, recent advances primarily adopt label noise filtering to separate clean samples from noisy ones on each client, thereby mitigating the negative impact of label noise. However, these prior methods do not learn noise filters by exploiting knowledge across all clients, leading to sub-optimal and inferior noise filtering performance and thus damaging training stability. In this paper, we present FedDiv to tackle the challenges of F-LNL. Specifically, we propose a global noise filter called Federated Noise Filter for effectively identifying samples with noisy labels on every client, thereby raising stability during local training sessions. Without sacrificing data privacy, this is achieved by modeling the global distribution of label noise across all clients. Then, in an effort to make the global model achieve higher performance, we introduce a Predictive Consistency based Sampler to identify more credible local data for local model training, thus preventing noise memorization and further boosting the training stability. Extensive experiments on CIFAR-10, CIFAR-100, and Clothing1M demonstrate that \texttt{FedDiv} achieves superior performance over state-of-the-art F-LNL methods under different label noise settings for both IID and non-IID data partitions. Source code is publicly available at //github.com/lijichang/FLNL-FedDiv.
We introduce the framework of "social learning" in the context of large language models (LLMs), whereby models share knowledge with each other in a privacy-aware manner using natural language. We present and evaluate two approaches for knowledge transfer between LLMs. In the first scenario, we allow the model to generate abstract prompts aiming to teach the task. In our second approach, models transfer knowledge by generating synthetic examples. We evaluate these methods across diverse datasets and quantify memorization as a proxy for privacy loss. These techniques inspired by social learning yield promising results with low memorization of the original data. In particular, we show that performance using these methods is comparable to results with the use of original labels and prompts. Our work demonstrates the viability of social learning for LLMs, establishes baseline approaches and highlights several unexplored areas for future work.
Vertical federated learning has garnered significant attention as it allows clients to train machine learning models collaboratively without sharing local data, which protects the client's local private data. However, existing VFL methods face challenges when dealing with heterogeneous local models among participants, which affects optimization convergence and generalization. To address this challenge, this paper proposes a novel approach called Vertical federated learning for training multiple Heterogeneous models (VFedMH). VFedMH focuses on aggregating the local embeddings of each participant's knowledge during forward propagation. To protect the participants' local embedding values, we propose an embedding protection method based on lightweight blinding factors. In particular, participants obtain local embedding using local heterogeneous models. Then the passive party, who owns only features of the sample, injects the blinding factor into the local embedding and sends it to the active party. The active party aggregates local embeddings to obtain global knowledge embeddings and sends them to passive parties. The passive parties then utilize the global embeddings to propagate forward on their local heterogeneous networks. However, the passive party does not own the sample labels, so the local model gradient cannot be calculated locally. To overcome this limitation, the active party assists the passive party in computing its local heterogeneous model gradients. Then, each participant trains their local model using the heterogeneous model gradients. The objective is to minimize the loss value of their respective local heterogeneous models. Extensive experiments are conducted to demonstrate that VFedMH can simultaneously train multiple heterogeneous models with heterogeneous optimization and outperform some recent methods in model performance.
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex. In this work, we revisit the mathematical foundations of GANs, and theoretically reveal that the native adversarial loss for GAN training is insufficient to fix the problem of subsets with positive Lebesgue measure of the generated data manifold lying out of the real data manifold. Instead, we find that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold. We thereby propose to improve the optimization of GANs with score matching regularity (SMaRt). Regarding the empirical evidences, we first design a toy example to show that training GANs by the aid of a ground-truth score function can help reproduce the real data distribution more accurately, and then confirm that our approach can consistently boost the synthesis performance of various state-of-the-art GANs on real-world datasets with pre-trained diffusion models acting as the approximate score function. For instance, when training Aurora on the ImageNet 64x64 dataset, we manage to improve FID from 8.87 to 7.11, on par with the performance of one-step consistency model. The source code will be made public.
Many imitation learning (IL) algorithms employ inverse reinforcement learning (IRL) to infer the intrinsic reward function that an expert is implicitly optimizing for based on their demonstrated behaviors. However, in practice, IRL-based IL can fail to accomplish the underlying task due to a misalignment between the inferred reward and the objective of the task. In this paper, we address the susceptibility of IL to such misalignment by introducing a semi-supervised reward design paradigm called Protagonist Antagonist Guided Adversarial Reward (PAGAR). PAGAR-based IL trains a policy to perform well under mixed reward functions instead of a single reward function as in IRL-based IL. We identify the theoretical conditions under which PAGAR-based IL can avoid the task failures caused by reward misalignment. We also present a practical on-and-off policy approach to implementing PAGAR-based IL. Experimental results show that our algorithm outperforms standard IL baselines in complex tasks and challenging transfer settings.
This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called bags in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We then propose the PriorBoost algorithm, which adaptively forms bags of samples that are increasingly homogeneous with respect to (unobserved) individual responses to improve model quality. We study label differential privacy for aggregate learning, and we also provide extensive experiments showing that PriorBoost regularly achieves optimal model quality for event-level predictions, in stark contrast to non-adaptive algorithms.
The training paradigm for machine translation has gradually shifted, from learning neural machine translation (NMT) models with extensive parallel corpora to instruction finetuning on multilingual large language models (LLMs) with high-quality translation pairs. In this paper, we focus on boosting many-to-many multilingual translation of LLMs with an emphasis on zero-shot translation directions. We demonstrate that prompt strategies adopted during finetuning are crucial to zero-shot translation and introduce a cross-lingual consistency regularization, XConST, to bridge the representation gap among different languages and improve zero-shot translation performance. XConST is not a new method, but a version of CrossConST (Gao et al., 2023a) adapted for translation instruction finetuning with LLMs. Experimental results on ALMA (Xu et al., 2023), Tower (Team, 2024), and LLaMA-2 (Touvron et al., 2023) show that our approach consistently improves translation performance. Our implementations are available at //github.com/gpengzhi/CrossConST-LLM.
Offline reinforcement learning (RL) has attracted much attention due to its ability in learning from static offline datasets and eliminating the need of interacting with the environment. Nevertheless, the success of offline RL relies heavily on the offline transitions annotated with reward labels. In practice, we often need to hand-craft the reward function, which is sometimes difficult, labor-intensive, or inefficient. To tackle this challenge, we set our focus on the offline imitation learning (IL) setting, and aim at getting a reward function based on the expert data and unlabeled data. To that end, we propose a simple yet effective search-based offline IL method, tagged SEABO. SEABO allocates a larger reward to the transition that is close to its closest neighbor in the expert demonstration, and a smaller reward otherwise, all in an unsupervised learning manner. Experimental results on a variety of D4RL datasets indicate that SEABO can achieve competitive performance to offline RL algorithms with ground-truth rewards, given only a single expert trajectory, and can outperform prior reward learning and offline IL methods across many tasks. Moreover, we demonstrate that SEABO also works well if the expert demonstrations contain only observations. Our code is publicly available at //github.com/dmksjfl/SEABO.
Recent advances in multi-agent reinforcement learning (MARL) have opened up vast application prospects, including swarm control of drones, collaborative manipulation by robotic arms, and multi-target encirclement. However, potential security threats during the MARL deployment need more attention and thorough investigation. Recent researches reveal that an attacker can rapidly exploit the victim's vulnerabilities and generate adversarial policies, leading to the victim's failure in specific tasks. For example, reducing the winning rate of a superhuman-level Go AI to around 20%. They predominantly focus on two-player competitive environments, assuming attackers possess complete global state observation. In this study, we unveil, for the first time, the capability of attackers to generate adversarial policies even when restricted to partial observations of the victims in multi-agent competitive environments. Specifically, we propose a novel black-box attack (SUB-PLAY), which incorporates the concept of constructing multiple subgames to mitigate the impact of partial observability and suggests the sharing of transitions among subpolicies to improve the exploitative ability of attackers. Extensive evaluations demonstrate the effectiveness of SUB-PLAY under three typical partial observability limitations. Visualization results indicate that adversarial policies induce significantly different activations of the victims' policy networks. Furthermore, we evaluate three potential defenses aimed at exploring ways to mitigate security threats posed by adversarial policies, providing constructive recommendations for deploying MARL in competitive environments.
We propose a framework for learning calibrated uncertainties under domain shifts, where the source (training) distribution differs from the target (test) distribution. We detect such domain shifts via a differentiable density ratio estimator and train it together with the task network, composing an adjusted softmax predictive form concerning domain shift. In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution. We employ it to adjust the uncertainty of prediction in the task network. This idea of using the density ratio is based on the distributionally robust learning (DRL) framework, which accounts for the domain shift by adversarial risk minimization. We show that our proposed method generates calibrated uncertainties that benefit downstream tasks, such as unsupervised domain adaptation (UDA) and semi-supervised learning (SSL). On these tasks, methods like self-training and FixMatch use uncertainties to select confident pseudo-labels for re-training. Our experiments show that the introduction of DRL leads to significant improvements in cross-domain performance. We also show that the estimated density ratios align with human selection frequencies, suggesting a positive correlation with a proxy of human perceived uncertainties.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.