亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents NCOTA-DGD, a Decentralized Gradient Descent (DGD) algorithm that combines local gradient descent with a novel Non-Coherent Over-The-Air (NCOTA) consensus scheme to solve distributed machine-learning problems over wirelessly-connected systems. NCOTA-DGD leverages the waveform superposition properties of the wireless channels: it enables simultaneous transmissions under half-duplex constraints, by mapping local optimization signals to a mixture of preamble sequences, and consensus via non-coherent combining at the receivers. NCOTA-DGD operates without channel state information at transmitters and receivers, and leverages the average channel pathloss to mix signals, without explicit knowledge of the mixing weights (typically known in consensus-based optimization algorithms). It is shown both theoretically and numerically that, for smooth and strongly-convex problems with fixed consensus and learning stepsizes, the updates of NCOTA-DGD converge in Euclidean distance to the global optimum with rate $\mathcal O(K^{-1/4})$ for a target of $K$ iterations. NCOTA-DGD is evaluated numerically over a logistic regression problem, showing faster convergence vis-\`a-vis running time than implementations of the classical DGD algorithm over digital and analog orthogonal channels.

相關內容

Training at the edge utilizes continuously evolving data generated at different locations. Privacy concerns prohibit the co-location of this spatially as well as temporally distributed data, deeming it crucial to design training algorithms that enable efficient continual learning over decentralized private data. Decentralized learning allows serverless training with spatially distributed data. A fundamental barrier in such distributed learning is the high bandwidth cost of communicating model updates between agents. Moreover, existing works under this training paradigm are not inherently suitable for learning a temporal sequence of tasks while retaining the previously acquired knowledge. In this work, we propose CoDeC, a novel communication-efficient decentralized continual learning algorithm which addresses these challenges. We mitigate catastrophic forgetting while learning a task sequence in a decentralized learning setup by combining orthogonal gradient projection with gossip averaging across decentralized agents. Further, CoDeC includes a novel lossless communication compression scheme based on the gradient subspaces. We express layer-wise gradients as a linear combination of the basis vectors of these gradient subspaces and communicate the associated coefficients. We theoretically analyze the convergence rate for our algorithm and demonstrate through an extensive set of experiments that CoDeC successfully learns distributed continual tasks with minimal forgetting. The proposed compression scheme results in up to 4.8x reduction in communication costs with iso-performance as the full communication baseline.

Mixtures of Experts (MoE) are known for their ability to learn complex conditional distributions with multiple modes. However, despite their potential, these models are challenging to train and often tend to produce poor performance, explaining their limited popularity. Our hypothesis is that this under-performance is a result of the commonly utilized maximum likelihood (ML) optimization, which leads to mode averaging and a higher likelihood of getting stuck in local maxima. We propose a novel curriculum-based approach to learning mixture models in which each component of the MoE is able to select its own subset of the training data for learning. This approach allows for independent optimization of each component, resulting in a more modular architecture that enables the addition and deletion of components on the fly, leading to an optimization less susceptible to local optima. The curricula can ignore data-points from modes not represented by the MoE, reducing the mode-averaging problem. To achieve a good data coverage, we couple the optimization of the curricula with a joint entropy objective and optimize a lower bound of this objective. We evaluate our curriculum-based approach on a variety of multimodal behavior learning tasks and demonstrate its superiority over competing methods for learning MoE models and conditional generative models.

Federated Learning (FL) has recently emerged as a popular framework, which allows resource-constrained discrete clients to cooperatively learn the global model under the orchestration of a central server while storing privacy-sensitive data locally. However, due to the difference in equipment and data divergence of heterogeneous clients, there will be parameter deviation between local models, resulting in a slow convergence rate and a reduction of the accuracy of the global model. The current FL algorithms use the static client learning strategy pervasively and can not adapt to the dynamic training parameters of different clients. In this paper, by considering the deviation between different local model parameters, we propose an adaptive learning rate scheme for each client based on entropy theory to alleviate the deviation between heterogeneous clients and achieve fast convergence of the global model. It's difficult to design the optimal dynamic learning rate for each client as the local information of other clients is unknown, especially during the local training epochs without communications between local clients and the central server. To enable a decentralized learning rate design for each client, we first introduce mean-field schemes to estimate the terms related to other clients' local model parameters. Then the decentralized adaptive learning rate for each client is obtained in closed form by constructing the Hamilton equation. Moreover, we prove that there exist fixed point solutions for the mean-field estimators, and an algorithm is proposed to obtain them. Finally, extensive experimental results on real datasets show that our algorithm can effectively eliminate the deviation between local model parameters compared to other recent FL algorithms.

Decentralized learning offers privacy and communication efficiency when data are naturally distributed among agents communicating over an underlying graph. Motivated by overparameterized learning settings, in which models are trained to zero training loss, we study algorithmic and generalization properties of decentralized learning with gradient descent on separable data. Specifically, for decentralized gradient descent (DGD) and a variety of loss functions that asymptote to zero at infinity (including exponential and logistic losses), we derive novel finite-time generalization bounds. This complements a long line of recent work that studies the generalization performance and the implicit bias of gradient descent over separable data, but has thus far been limited to centralized learning scenarios. Notably, our generalization bounds approximately match in order their centralized counterparts. Critical behind this, and of independent interest, is establishing novel bounds on the training loss and the rate-of-consensus of DGD for a class of self-bounded losses. Finally, on the algorithmic front, we design improved gradient-based routines for decentralized learning with separable data and empirically demonstrate orders-of-magnitude of speed-up in terms of both training and generalization performance.

In this paper, we propose IMA-GNN as an In-Memory Accelerator for centralized and decentralized Graph Neural Network inference, explore its potential in both settings and provide a guideline for the community targeting flexible and efficient edge computation. Leveraging IMA-GNN, we first model the computation and communication latencies of edge devices. We then present practical case studies on GNN-based taxi demand and supply prediction and also adopt four large graph datasets to quantitatively compare and analyze centralized and decentralized settings. Our cross-layer simulation results demonstrate that on average, IMA-GNN in the centralized setting can obtain ~790x communication speed-up compared to the decentralized GNN setting. However, the decentralized setting performs computation ~1400x faster while reducing the power consumption per device. This further underlines the need for a hybrid semi-decentralized GNN approach.

We study decentralized multi-agent learning in bipartite queueing systems, a standard model for service systems. In particular, N agents request service from K servers in a fully decentralized way, i.e, by running the same algorithm without communication. Previous decentralized algorithms are restricted to symmetric systems, have performance that is degrading exponentially in the number of servers, require communication through shared randomness and unique agent identities, and are computationally demanding. In contrast, we provide a simple learning algorithm that, when run decentrally by each agent, leads the queueing system to have efficient performance in general asymmetric bipartite queueing systems while also having additional robustness properties. Along the way, we provide the first provably efficient UCB-based algorithm for the centralized case of the problem.

Often in Software Engineering, a modeling formalism has to support scenarios of inconsistency in which several requirements either reinforce or contradict each other. Paraconsistent transition systems are proposed in this paper as one such formalism: states evolve through two accessibility relations capturing weighted evidence of a transition or its absence, respectively. Their weights come from a specific residuated lattice. A category of these systems, and the corresponding algebra, is defined as providing a formal setting to model different application scenarios. One of them, dealing with the effect of quantum decoherence in quantum programs, is used for illustration purposes.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

北京阿比特科技有限公司