亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The idea of an optimal test statistic in the context of simultaneous hypothesis testing was given by Sun and Tony Cai (2009) which is the conditional probability of a hypothesis being null given the data. Since we do not have a simplified expression of the statistic, it is impossible to implement the optimal test in more general dependency setup. This note simplifies the expression of optimal test statistic of Sun and Tony Cai (2009) under the multivariate normal model. We have considered the model of Xie et. al.(2011), where the test statistics are generated from a multivariate normal distribution conditional to the unobserved states of the hypotheses and the states are i.i.d. Bernoulli random variables. While the equivalence of LFDR and optimal test statistic was established under very stringent conditions of Xie et. al.(2016), the expression obtained in this paper is valid for any covariance matrix and for any fixed 0<p<1. The optimal procedure is implemented with the help of this expression and the performances have been compared with Benjamini Hochberg method and marginal procedure.

相關內容

Temporal irreversibility, often referred to as the arrow of time, is a fundamental concept in statistical mechanics. Markers of irreversibility also provide a powerful characterisation of information processing in biological systems. However, current approaches tend to describe temporal irreversibility in terms of a single scalar quantity, without disentangling the underlying dynamics that contribute to irreversibility. Here we propose a broadly applicable information-theoretic framework to characterise the arrow of time in multivariate time series, which yields qualitatively different types of irreversible information dynamics. This multidimensional characterisation reveals previously unreported high-order modes of irreversibility, and establishes a formal connection between recent heuristic markers of temporal irreversibility and metrics of information processing. We demonstrate the prevalence of high-order irreversibility in the hyperactive regime of a biophysical model of brain dynamics, showing that our framework is both theoretically principled and empirically useful. This work challenges the view of the arrow of time as a monolithic entity, enhancing both our theoretical understanding of irreversibility and our ability to detect it in practical applications.

In novelty detection, the objective is to determine whether the test sample contains any outliers, using a sample of controls (inliers). This involves many-to-one comparisons of individual test points against the control sample. A recent approach applies the Benjamini-Hochberg procedure to the conformal $p$-values resulting from these comparisons, ensuring false discovery rate control. In this paper, we suggest using Wilcoxon-Mann-Whitney tests for the comparisons and subsequently applying the closed testing principle to derive post-hoc confidence bounds for the number of outliers in any subset of the test sample. We revisit an elegant result that under a nonparametric alternative known as Lehmann's alternative, Wilcoxon-Mann-Whitney is locally most powerful among rank tests. By combining this result with a simple observation, we demonstrate that the proposed procedure is more powerful for the null hypothesis of no outliers than the Benjamini-Hochberg procedure applied to conformal $p$-values.

Here, we show that the InfoNCE objective is equivalent to the ELBO in a new class of probabilistic generative model, the recognition parameterised model (RPM). When we learn the optimal prior, the RPM ELBO becomes equal to the mutual information (MI; up to a constant), establishing a connection to pre-existing self-supervised learning methods such as InfoNCE. However, practical InfoNCE methods do not use the MI as an objective; the MI is invariant to arbitrary invertible transformations, so using an MI objective can lead to highly entangled representations (Tschannen et al., 2019). Instead, the actual InfoNCE objective is a simplified lower bound on the MI which is loose even in the infinite sample limit. Thus, an objective that works (i.e. the actual InfoNCE objective) appears to be motivated as a loose bound on an objective that does not work (i.e. the true MI which gives arbitrarily entangled representations). We give an alternative motivation for the actual InfoNCE objective. In particular, we show that in the infinite sample limit, and for a particular choice of prior, the actual InfoNCE objective is equal to the ELBO (up to a constant); and the ELBO is equal to the marginal likelihood with a deterministic recognition model. Thus, we argue that our VAE perspective gives a better motivation for InfoNCE than MI, as the actual InfoNCE objective is only loosely bounded by the MI, but is equal to the ELBO/marginal likelihood (up to a constant).

During the process of robot-assisted ultrasound(US) puncture, it is important to estimate the location of the puncture from the 2D US images. To this end, the calibration of the US image becomes an important issue. In this paper, we proposed a depth camera-based US calibration method, where an easy-to-deploy device is designed for the calibration. With this device, the coordinates of the puncture needle tip are collected respectively in US image and in the depth camera, upon which a correspondence matrix is built for calibration. Finally, a number of experiments are conducted to validate the effectiveness of our calibration method.

This paper surveys some recent developments in measures of association related to a new coefficient of correlation introduced by the author. A straightforward extension of this coefficient to standard Borel spaces (which includes all Polish spaces), overlooked in the literature so far, is proposed at the end of the survey.

We propose a novel way to improve the generalisation capacity of deep learning models by reducing high correlations between neurons. For this, we present two regularisation terms computed from the weights of a minimum spanning tree of the clique whose vertices are the neurons of a given network (or a sample of those), where weights on edges are correlation dissimilarities. We provide an extensive set of experiments to validate the effectiveness of our terms, showing that they outperform popular ones. Also, we demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms, suggesting that redundancies play a significant role in artificial neural networks, as evidenced by some studies in neuroscience for real networks. We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms that consider the whole set of neurons and that can be applied to a feedforward architecture in any deep learning task such as classification, data generation, or regression.

Hardware implementations of Spiking Neural Networks (SNNs) represent a promising approach to edge-computing for applications that require low-power and low-latency, and which cannot resort to external cloud-based computing services. However, most solutions proposed so far either support only relatively small networks, or take up significant hardware resources, to implement large networks. To realize large-scale and scalable SNNs it is necessary to develop an efficient asynchronous communication and routing fabric that enables the design of multi-core architectures. In particular the core interface that manages inter-core spike communication is a crucial component as it represents the bottleneck of Power-Performance-Area (PPA) especially for the arbitration architecture and the routing memory. In this paper we present an arbitration mechanism with the corresponding asynchronous encoding pipeline circuits, based on hierarchical arbiter trees. The proposed scheme reduces the latency by more than 70% in sparse-event mode, compared to the state-of-the-art arbitration architectures, with lower area cost. The routing memory makes use of asynchronous Content Addressable Memory (CAM) with Current Sensing Completion Detection (CSCD), which saves approximately 46% energy, and achieves a 40% increase in throughput against conventional asynchronous CAM using configurable delay lines, at the cost of only a slight increase in area. In addition as it radically reduces the core interface resources in multi-core neuromorphic processors, the arbitration architecture and CAM architecture we propose can be also applied to a wide range of general asynchronous circuits and systems.

This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choosing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a family of Bayesian procedures to perform predictions about the unknown function, and must choose a member of the family that will hopefully provide good predictive performances. We base our study on the general concept of scoring rules, which provides an effective framework for building leave-one-out selection and validation criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that the choice of an appropriate family of models is often more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show that the regularity parameter of a Mat{\'e}rn covariance can be selected effectively by most selection criteria.

This paper presents the Never Ending Open Learning Adaptive Framework (NEOLAF), an integrated neural-symbolic cognitive architecture that models and constructs intelligent agents. The NEOLAF framework is a superior approach to constructing intelligent agents than both the pure connectionist and pure symbolic approaches due to its explainability, incremental learning, efficiency, collaborative and distributed learning, human-in-the-loop enablement, and self-improvement. The paper further presents a compelling experiment where a NEOLAF agent, built as a problem-solving agent, is fed with complex math problems from the open-source MATH dataset. The results demonstrate NEOLAF's superior learning capability and its potential to revolutionize the field of cognitive architectures and self-improving adaptive instructional systems.

Sparse principal component analysis (SPCA) is a popular tool for dimensionality reduction in high-dimensional data. However, there is still a lack of theoretically justified Bayesian SPCA methods that can scale well computationally. One of the major challenges in Bayesian SPCA is selecting an appropriate prior for the loadings matrix, considering that principal components are mutually orthogonal. We propose a novel parameter-expanded coordinate ascent variational inference (PX-CAVI) algorithm. This algorithm utilizes a spike and slab prior, which incorporates parameter expansion to cope with the orthogonality constraint. Besides comparing to two popular SPCA approaches, we introduce the PX-EM algorithm as an EM analogue to the PX-CAVI algorithm for comparison. Through extensive numerical simulations, we demonstrate that the PX-CAVI algorithm outperforms these SPCA approaches, showcasing its superiority in terms of performance. We study the posterior contraction rate of the variational posterior, providing a novel contribution to the existing literature. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. The R package VBsparsePCA with an implementation of the algorithm is available on the Comprehensive R Archive Network (CRAN).

北京阿比特科技有限公司