Loading of shipping containers for dairy products often includes a press-fit task, which involves manually stacking milk cartons in a container without using pallets or packaging. Automating this task with a mobile manipulator can reduce worker strain, and also enhance the efficiency and safety of the container loading process. This paper proposes an approach called Adaptive Compliant Control with Integrated Failure Recovery (ACCIFR), which enables a mobile manipulator to reliably perform the press-fit task. We base the approach on a demonstration learning-based compliant control framework, such that we integrate a monitoring and failure recovery mechanism for successful task execution. Concretely, we monitor the execution through distance and force feedback, detect collisions while the robot is performing the press-fit task, and use wrench measurements to classify the direction of collision; this information informs the subsequent recovery process. We evaluate the method on a miniature container setup, considering variations in the (i) starting position of the end effector, (ii) goal configuration, and (iii) object grasping position. The results demonstrate that the proposed approach outperforms the baseline demonstration-based learning framework regarding adaptability to environmental variations and the ability to recover from collision failures, making it a promising solution for practical press-fit applications.
In addition to maximizing the total revenue, decision-makers in lots of industries would like to guarantee balanced consumption across different resources. For instance, in the retailing industry, ensuring a balanced consumption of resources from different suppliers enhances fairness and helps main a healthy channel relationship; in the cloud computing industry, resource-consumption balance helps increase customer satisfaction and reduce operational costs. Motivated by these practical needs, this paper studies the price-based network revenue management (NRM) problem with both demand learning and fair resource-consumption balancing. We introduce the regularized revenue, i.e., the total revenue with a balancing regularization, as our objective to incorporate fair resource-consumption balancing into the revenue maximization goal. We propose a primal-dual-type online policy with the Upper-Confidence-Bound (UCB) demand learning method to maximize the regularized revenue. We adopt several innovative techniques to make our algorithm a unified and computationally efficient framework for the continuous price set and a wide class of balancing regularizers. Our algorithm achieves a worst-case regret of $\widetilde O(N^{5/2}\sqrt{T})$, where $N$ denotes the number of products and $T$ denotes the number of time periods. Numerical experiments in a few NRM examples demonstrate the effectiveness of our algorithm in simultaneously achieving revenue maximization and fair resource-consumption balancing
Training a generative model with limited number of samples is a challenging task. Current methods primarily rely on few-shot model adaption to train the network. However, in scenarios where data is extremely limited (less than 10), the generative network tends to overfit and suffers from content degradation. To address these problems, we propose a novel phasic content fusing few-shot diffusion model with directional distribution consistency loss, which targets different learning objectives at distinct training stages of the diffusion model. Specifically, we design a phasic training strategy with phasic content fusion to help our model learn content and style information when t is large, and learn local details of target domain when t is small, leading to an improvement in the capture of content, style and local details. Furthermore, we introduce a novel directional distribution consistency loss that ensures the consistency between the generated and source distributions more efficiently and stably than the prior methods, preventing our model from overfitting. Finally, we propose a cross-domain structure guidance strategy that enhances structure consistency during domain adaptation. Theoretical analysis, qualitative and quantitative experiments demonstrate the superiority of our approach in few-shot generative model adaption tasks compared to state-of-the-art methods. The source code is available at: //github.com/sjtuplayer/few-shot-diffusion.
Triplet Markov chains are general generative models for sequential data which take into account three kinds of random variables: (noisy) observations, their associated discrete labels and latent variables which aim at strengthening the distribution of the observations and their associated labels. However, in practice, we do not have at our disposal all the labels associated to the observations to estimate the parameters of such models. In this paper, we propose a general framework based on a variational Bayesian inference to train parameterized triplet Markov chain models in a semi-supervised context. The generality of our approach enables us to derive semi-supervised algorithms for a variety of generative models for sequential Bayesian classification.
The lack of quality labeled data is one of the main bottlenecks for training Deep Learning models. As the task increases in complexity, there is a higher penalty for overfitting and unstable learning. The typical paradigm employed today is Self-Supervised learning, where the model attempts to learn from a large corpus of unstructured and unlabeled data and then transfer that knowledge to the required task. Some notable examples of self-supervision in other modalities are BERT for Large Language Models, Wav2Vec for Speech Recognition, and the Masked AutoEncoder for Vision, which all utilize Transformers to solve a masked prediction task. GeoAI is uniquely poised to take advantage of the self-supervised methodology due to the decades of data collected, little of which is precisely and dependably annotated. Our goal is to extract building and road segmentations from Digital Elevation Models (DEM) that provide a detailed topography of the earths surface. The proposed architecture is the Masked Autoencoder pre-trained on ImageNet (with the limitation that there is a large domain discrepancy between ImageNet and DEM) with an UperNet Head for decoding segmentations. We tested this model with 450 and 50 training images only, utilizing roughly 5% and 0.5% of the original data respectively. On the building segmentation task, this model obtains an 82.1% Intersection over Union (IoU) with 450 Images and 69.1% IoU with only 50 images. On the more challenging road detection task the model obtains an 82.7% IoU with 450 images and 73.2% IoU with only 50 images. Any hand-labeled dataset made today about the earths surface will be immediately obsolete due to the constantly changing nature of the landscape. This motivates the clear necessity for data-efficient learners that can be used for a wide variety of downstream tasks.
Dexterous manipulation tasks involving contact-rich interactions pose a significant challenge for both model-based control systems and imitation learning algorithms. The complexity arises from the need for multi-fingered robotic hands to dynamically establish and break contacts, balance non-prehensile forces, and control large degrees of freedom. Reinforcement learning (RL) offers a promising approach due to its general applicability and capacity to autonomously acquire optimal manipulation strategies. However, its real-world application is often hindered by the necessity to generate a large number of samples, reset the environment, and obtain reward signals. In this work, we introduce an efficient system for learning dexterous manipulation skills with RL to alleviate these challenges. The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping. This combination allows us to utilize data from different tasks or objects as a starting point for training new tasks, significantly improving learning efficiency. Additionally, our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy as well as learned reward functions, eliminating the need for manual resets and reward engineering. We demonstrate the benefits of reusing past data as replay buffer initialization for new tasks, for instance, the fast acquisition of intricate manipulation skills in the real world on a four-fingered robotic hand. (Videos: //sites.google.com/view/reboot-dexterous)
The Common Vulnerabilities and Exposures (CVE) are pivotal information for proactive cybersecurity measures, including service patching, security hardening, and more. However, CVEs typically offer low-level, product-oriented descriptions of publicly disclosed cybersecurity vulnerabilities, often lacking the essential attack semantic information required for comprehensive weakness characterization and threat impact estimation. This critical insight is essential for CVE prioritization and the identification of potential countermeasures, particularly when dealing with a large number of CVEs. Current industry practices involve manual evaluation of CVEs to assess their attack severities using the Common Vulnerability Scoring System (CVSS) and mapping them to Common Weakness Enumeration (CWE) for potential mitigation identification. Unfortunately, this manual analysis presents a major bottleneck in the vulnerability analysis process, leading to slowdowns in proactive cybersecurity efforts and the potential for inaccuracies due to human errors. In this research, we introduce our novel predictive model and tool (called CVEDrill) which revolutionizes CVE analysis and threat prioritization. CVEDrill accurately estimates the CVSS vector for precise threat mitigation and priority ranking and seamlessly automates the classification of CVEs into the appropriate CWE hierarchy classes. By harnessing CVEDrill, organizations can now implement cybersecurity countermeasure mitigation with unparalleled accuracy and timeliness, surpassing in this domain the capabilities of state-of-the-art tools like ChaptGPT.
The marketplace system connecting demands and supplies has been explored to develop unbiased decision-making in valuing properties. Real estate appraisal serves as one of the high-cost property valuation tasks for financial institutions since it requires domain experts to appraise the estimation based on the corresponding knowledge and the judgment of the market. Existing automated valuation models reducing the subjectivity of domain experts require a large number of transactions for effective evaluation, which is predominantly limited to not only the labeling efforts of transactions but also the generalizability of new developing and rural areas. To learn representations from unlabeled real estate sets, existing self-supervised learning (SSL) for tabular data neglects various important features, and fails to incorporate domain knowledge. In this paper, we propose DoRA, a Domain-based self-supervised learning framework for low-resource Real estate Appraisal. DoRA is pre-trained with an intra-sample geographic prediction as the pretext task based on the metadata of the real estate for equipping the real estate representations with prior domain knowledge. Furthermore, inter-sample contrastive learning is employed to generalize the representations to be robust for limited transactions of downstream tasks. Our benchmark results on three property types of real-world transactions show that DoRA significantly outperforms the SSL baselines for tabular data, the graph-based methods, and the supervised approaches in the few-shot scenarios by at least 7.6% for MAPE, 11.59% for MAE, and 3.34% for HR10%. We expect DoRA to be useful to other financial practitioners with similar marketplace applications who need general models for properties that are newly built and have limited records. The source code is available at //github.com/wwweiwei/DoRA.
Neural based approaches to automatic evaluation of subjective responses have shown superior performance and efficiency compared to traditional rule-based and feature engineering oriented solutions. However, it remains unclear whether the suggested neural solutions are sufficient replacements of human raters as we find recent works do not properly account for rubric items that are essential for automated essay scoring during model training and validation. In this paper, we propose a series of data augmentation operations that train and test an automated scoring model to learn features and functions overlooked by previous works while still achieving state-of-the-art performance in the Automated Student Assessment Prize dataset.
Robotic manipulation tasks, such as object rearrangement, play a crucial role in enabling robots to interact with complex and arbitrary environments. Existing work focuses primarily on single-level rearrangement planning and, even if multiple levels exist, dependency relations among substructures are geometrically simpler, like tower stacking. We propose Structural Concept Learning (SCL), a deep learning approach that leverages graph attention networks to perform multi-level object rearrangement planning for scenes with structural dependency hierarchies. It is trained on a self-generated simulation data set with intuitive structures, works for unseen scenes with an arbitrary number of objects and higher complexity of structures, infers independent substructures to allow for task parallelization over multiple manipulators, and generalizes to the real world. We compare our method with a range of classical and model-based baselines to show that our method leverages its scene understanding to achieve better performance, flexibility, and efficiency. The dataset, supplementary details, videos, and code implementation are available at: //manavkulshrestha.github.io/scl
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.