Triplet Markov chains are general generative models for sequential data which take into account three kinds of random variables: (noisy) observations, their associated discrete labels and latent variables which aim at strengthening the distribution of the observations and their associated labels. However, in practice, we do not have at our disposal all the labels associated to the observations to estimate the parameters of such models. In this paper, we propose a general framework based on a variational Bayesian inference to train parameterized triplet Markov chain models in a semi-supervised context. The generality of our approach enables us to derive semi-supervised algorithms for a variety of generative models for sequential Bayesian classification.
Performing inference on large volumes of samples with large language models (LLMs) can be computationally and financially costly in industry and real-world use. We propose batch prompting, a simple yet effective prompting approach that enables the LLM to run inference in batches, instead of one sample at a time. Our method reduces both token and time costs while retaining downstream performance. We theoretically demonstrate that under a few-shot in-context learning setting, the inference costs decrease almost inverse linearly with the number of samples in each batch. We extensively validate the effectiveness of batch prompting on ten datasets across commonsense QA, arithmetic reasoning, and NLI/NLU: batch prompting significantly~(up to 5x with six samples in batch) reduces the LLM (Codex) inference token and time costs while achieving better or comparable performance. For state-of-the-art Chat-based LLMs, e.g., GPT-3.5 and GPT-4, we show the benefits of batch prompting also hold. Further analysis shows that the number of samples in each batch and the complexity of tasks affect its performance. Moreover, batch prompting can be applied across different reasoning methods using LLMs. Our code can be found at the site //github.com/xlang-ai/batch-prompting.
Leave-one-out cross-validation (LOO-CV) is a popular method for comparing Bayesian models based on their estimated predictive performance on new, unseen, data. As leave-one-out cross-validation is based on finite observed data, there is uncertainty about the expected predictive performance on new data. By modeling this uncertainty when comparing two models, we can compute the probability that one model has a better predictive performance than the other. Modeling this uncertainty well is not trivial, and for example, it is known that the commonly used standard error estimate is often too small. We study the properties of the Bayesian LOO-CV estimator and the related uncertainty estimates when comparing two models. We provide new results of the properties both theoretically in the linear regression case and empirically for multiple different models and discuss the challenges of modeling the uncertainty. We show that problematic cases include: comparing models with similar predictions, misspecified models, and small data. In these cases, there is a weak connection in the skewness of the individual leave-one-out terms and the distribution of the error of the Bayesian LOO-CV estimator. We show that it is possible that the problematic skewness of the error distribution, which occurs when the models make similar predictions, does not fade away when the data size grows to infinity in certain situations. Based on the results, we also provide practical recommendations for the users of Bayesian LOO-CV for model comparison.
With the availability of extraordinarily huge data sets, solving the problems of distributed statistical methodology and computing for such data sets has become increasingly crucial in the big data area. In this paper, we focus on the distributed sparse penalized linear log-contrast model in massive compositional data. In particular, two distributed optimization techniques under centralized and decentralized topologies are proposed for solving the two different constrained convex optimization problems. Both two proposed algorithms are based on the frameworks of Alternating Direction Method of Multipliers (ADMM) and Coordinate Descent Method of Multipliers(CDMM, Lin et al., 2014, Biometrika). It is worth emphasizing that, in the decentralized topology, we introduce a distributed coordinate-wise descent algorithm based on Group ADMM(GADMM, Elgabli et al., 2020, Journal of Machine Learning Research) for obtaining a communication-efficient regularized estimation. Correspondingly, the convergence theories of the proposed algorithms are rigorously established under some regularity conditions. Numerical experiments on both synthetic and real data are conducted to evaluate our proposed algorithms.
Jina Embeddings constitutes a set of high-performance sentence embedding models adept at translating textual inputs into numerical representations, capturing the semantics of the text. These models excel in applications like dense retrieval and semantic textual similarity. This paper details the development of Jina Embeddings, starting with the creation of high-quality pairwise and triplet datasets. It underlines the crucial role of data cleaning in dataset preparation, offers in-depth insights into the model training process, and concludes with a comprehensive performance evaluation using the Massive Text Embedding Benchmark (MTEB). Furthermore, to increase the model's awareness of grammatical negation, we construct a novel training and evaluation dataset of negated and non-negated statements, which we make publicly available to the community.
Modern NLP models are often trained over large untrusted datasets, raising the potential for a malicious adversary to compromise model behaviour. For instance, backdoors can be implanted through crafting training instances with a specific textual trigger and a target label. This paper posits that backdoor poisoning attacks exhibit \emph{spurious correlation} between simple text features and classification labels, and accordingly, proposes methods for mitigating spurious correlation as means of defence. Our empirical study reveals that the malicious triggers are highly correlated to their target labels; therefore such correlations are extremely distinguishable compared to those scores of benign features, and can be used to filter out potentially problematic instances. Compared with several existing defences, our defence method significantly reduces attack success rates across backdoor attacks, and in the case of insertion-based attacks, our method provides a near-perfect defence.
Fitting generative models to sequential data typically involves two recursive computations through time, one forward and one backward. The latter could be a computation of the loss gradient (as in backpropagation through time), or an inference algorithm (as in the RTS/Kalman smoother). The backward pass in particular is computationally expensive (since it is inherently serial and cannot exploit GPUs), and difficult to map onto biological processes. Work-arounds have been proposed; here we explore a very different one: requiring the generative model to learn the joint distribution over current and previous states, rather than merely the transition probabilities. We show on toy datasets that different architectures employing this principle can learn aspects of the data typically requiring the backward pass.
This work presents an algorithm for tracking the shape of multiple entangling Deformable Linear Objects (DLOs) from a sequence of RGB-D images. This algorithm runs in real-time and improves on previous single-DLO tracking approaches by enabling tracking of multiple objects. This is achieved using Global-Local Topology Preservation (GLTP). This work uses the geodesic distance in GLTP to define the distance between separate objects and the distance between different parts of the same object. Tracking multiple entangling DLOs is demonstrated experimentally. The source code is publicly released.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.