亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weak-label learning is a challenging task that requires learning from data "bags" containing positive and negative instances, but only the bag labels are known. The pool of negative instances is usually larger than positive instances, thus making selecting the most informative negative instance critical for performance. Such a selection strategy for negative instances from each bag is an open problem that has not been well studied for weak-label learning. In this paper, we study several sampling strategies that can measure the usefulness of negative instances for weak-label learning and select them accordingly. We test our method on CIFAR-10 and AudioSet datasets and show that it improves the weak-label classification performance and reduces the computational cost compared to random sampling methods. Our work reveals that negative instances are not all equally irrelevant, and selecting them wisely can benefit weak-label learning.

相關內容

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

Pretrained transformers exhibit the remarkable ability of in-context learning (ICL): they can learn tasks from just a few examples provided in the prompt without updating any weights. This raises a foundational question: can ICL solve fundamentally $\textit{new}$ tasks that are very different from those seen during pretraining? To probe this question, we examine ICL's performance on linear regression while varying the diversity of tasks in the pretraining dataset. We empirically demonstrate a $\textit{task diversity threshold}$ for the emergence of ICL. Below this threshold, the pretrained transformer cannot solve unseen regression tasks, instead behaving like a Bayesian estimator with the $\textit{non-diverse pretraining task distribution}$ as the prior. Beyond this threshold, the transformer significantly outperforms this estimator; its behavior aligns with that of ridge regression, corresponding to a Gaussian prior over $\textit{all tasks}$, including those not seen during pretraining. Thus, when pretrained on data with task diversity greater than the threshold, transformers $\textit{can}$ optimally solve fundamentally new tasks in-context. Importantly, this capability hinges on it deviating from the Bayes optimal estimator with the pretraining distribution as the prior. This study also explores the effect of regularization, model capacity and task structure and underscores, in a concrete example, the critical role of task diversity, alongside data and model scale, in the emergence of ICL. Code is available at //github.com/mansheej/icl-task-diversity.

Modern generative machine learning models demonstrate surprising ability to create realistic outputs far beyond their training data, such as photorealistic artwork, accurate protein structures, or conversational text. These successes suggest that generative models learn to effectively parametrize and sample arbitrarily complex distributions. Beginning half a century ago, foundational works in nonlinear dynamics used tools from information theory to infer properties of chaotic attractors from time series, motivating the development of algorithms for parametrizing chaos in real datasets. In this perspective, we aim to connect these classical works to emerging themes in large-scale generative statistical learning. We first consider classical attractor reconstruction, which mirrors constraints on latent representations learned by state space models of time series. We next revisit early efforts to use symbolic approximations to compare minimal discrete generators underlying complex processes, a problem relevant to modern efforts to distill and interpret black-box statistical models. Emerging interdisciplinary works bridge nonlinear dynamics and learning theory, such as operator-theoretic methods for complex fluid flows, or detection of broken detailed balance in biological datasets. We anticipate that future machine learning techniques may revisit other classical concepts from nonlinear dynamics, such as transinformation decay and complexity-entropy tradeoffs.

Permutation tests enable testing statistical hypotheses in situations when the distribution of the test statistic is complicated or not available. In some situations, the test statistic under investigation is multivariate, with the multiple testing problem being an important example. The corresponding multivariate permutation tests are then typically based on a suitableone-dimensional transformation of the vector of partial permutation p-values via so called combining functions. This paper proposes a new approach that utilizes the optimal measure transportation concept. The final single p-value is computed from the empirical center-outward distribution function of the permuted multivariate test statistics. This method avoids computation of the partial p-values and it is easy to be implemented. In addition, it allows to compute and interpret contributions of the components of the multivariate test statistic to the non-conformity score and to the rejection of the null hypothesis. Apart from this method, the measure transportation is applied also to the vector of partial p-values as an alternative to the classical combining functions. Both techniques are compared with the standard approaches using various practical examples in a Monte Carlo study. An application on a functional data set is provided as well.

We study optimal data pooling for shared learning in two common maintenance operations: condition-based maintenance and spare parts management. We consider a set of systems subject to Poisson input -- the degradation or demand process -- that are coupled through an a-priori unknown rate. Decision problems involving these systems are high-dimensional Markov decision processes (MDPs) and hence notoriously difficult to solve. We present a decomposition result that reduces such an MDP to two-dimensional MDPs, enabling structural analyses and computations. Leveraging this decomposition, we (i) demonstrate that pooling data can lead to significant cost reductions compared to not pooling, and (ii) show that the optimal policy for the condition-based maintenance problem is a control limit policy, while for the spare parts management problem, it is an order-up-to level policy, both dependent on the pooled data.

The semantic segmentation of pelvic organs via MRI has important clinical significance. Recently, deep learning-enabled semantic segmentation has facilitated the three-dimensional geometric reconstruction of pelvic floor organs, providing clinicians with accurate and intuitive diagnostic results. However, the task of labeling pelvic floor MRI segmentation, typically performed by clinicians, is labor-intensive and costly, leading to a scarcity of labels. Insufficient segmentation labels limit the precise segmentation and reconstruction of pelvic floor organs. To address these issues, we propose a semi-supervised framework for pelvic organ segmentation. The implementation of this framework comprises two stages. In the first stage, it performs self-supervised pre-training using image restoration tasks. Subsequently, fine-tuning of the self-supervised model is performed, using labeled data to train the segmentation model. In the second stage, the self-supervised segmentation model is used to generate pseudo labels for unlabeled data. Ultimately, both labeled and unlabeled data are utilized in semi-supervised training. Upon evaluation, our method significantly enhances the performance in the semantic segmentation and geometric reconstruction of pelvic organs, Dice coefficient can increase by 2.65% averagely. Especially for organs that are difficult to segment, such as the uterus, the accuracy of semantic segmentation can be improved by up to 3.70%.

Quantifying the impact of individual data samples on machine learning models is an open research problem. This is particularly relevant when complex and high-dimensional relationships have to be learned from a limited sample of the data generating distribution, such as in deep learning. It was previously shown that, in these cases, models rely not only on extracting patterns which are helpful for generalisation, but also seem to be required to incorporate some of the training data more or less as is, in a process often termed memorisation. This raises the question: if some memorisation is a requirement for effective learning, what are its privacy implications? In this work we unify a broad range of previous definitions and perspectives on memorisation in ML, discuss their interplay with model generalisation and their implications of these phenomena on data privacy. Moreover, we systematise methods allowing practitioners to detect the occurrence of memorisation or quantify it and contextualise our findings in a broad range of ML learning settings. Finally, we discuss memorisation in the context of privacy attacks, differential privacy (DP) and adversarial actors.

Imaging through perturbed multimode fibres based on deep learning has been widely researched. However, existing methods mainly use target-speckle pairs in different configurations. It is challenging to reconstruct targets without trained networks. In this paper, we propose a physics-assisted, unsupervised, learning-based fibre imaging scheme. The role of the physical prior is to simplify the mapping relationship between the speckle pattern and the target image, thereby reducing the computational complexity. The unsupervised network learns target features according to the optimized direction provided by the physical prior. Therefore, the reconstruction process of the online learning only requires a few speckle patterns and unpaired targets. The proposed scheme also increases the generalization ability of the learning-based method in perturbed multimode fibres. Our scheme has the potential to extend the application of multimode fibre imaging.

Transfer learning has become an essential technique to exploit information from the source domain to boost performance of the target task. Despite the prevalence in high-dimensional data, heterogeneity and heavy tails are insufficiently accounted for by current transfer learning approaches and thus may undermine the resulting performance. We propose a transfer learning procedure in the framework of high-dimensional quantile regression models to accommodate heterogeneity and heavy tails in the source and target domains. We establish error bounds of transfer learning estimator based on delicately selected transferable source domains, showing that lower error bounds can be achieved for critical selection criterion and larger sample size of source tasks. We further propose valid confidence interval and hypothesis test procedures for individual component of high-dimensional quantile regression coefficients by advocating a double transfer learning estimator, which is one-step debiased estimator for the transfer learning estimator wherein the technique of transfer learning is designed again. By adopting data-splitting technique, we advocate a transferability detection approach that guarantees to circumvent negative transfer and identify transferable sources with high probability. Simulation results demonstrate that the proposed method exhibits some favorable and compelling performances and the practical utility is further illustrated by analyzing a real example.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

北京阿比特科技有限公司