亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Monte Carlo estimation in plays a crucial role in stochastic reaction networks. However, reducing the statistical uncertainty of the corresponding estimators requires sampling a large number of trajectories. We propose control variates based on the statistical moments of the process to reduce the estimators' variances. We develop an algorithm that selects an efficient subset of infinitely many control variates. To this end, the algorithm uses resampling and a redundancy-aware greedy selection. We demonstrate the efficiency of our approach in several case studies.

相關內容

This paper presents an approach for trajectory-centric learning control based on contraction metrics and disturbance estimation for nonlinear systems subject to matched uncertainties. The approach allows for the use of a broad class of model learning tools including deep neural networks to learn uncertain dynamics while still providing guarantees of transient tracking performance throughout the learning phase, including the special case of no learning. Within the proposed approach, a disturbance estimation law is proposed to estimate the pointwise value of the uncertainty, with pre-computable estimation error bounds (EEBs). The learned dynamics, the estimated disturbances, and the EEBs are then incorporated in a robust Riemannian energy condition to compute the control law that guarantees exponential convergence of actual trajectories to desired ones throughout the learning phase, even when the learned model is poor. On the other hand, with improved accuracy, the learned model can be incorporated in a high-level planner to plan better trajectories with improved performance, e.g., lower energy consumption and shorter travel time. The proposed framework is validated on a planar quadrotor navigation example.

Zeroth-order optimization methods are developed to overcome the practical hurdle of having knowledge of explicit derivatives. Instead, these schemes work with merely access to noisy functions evaluations. The predominant approach is to mimic first-order methods by means of some gradient estimator. The theoretical limitations are well-understood, yet, as most of these methods rely on finite-differencing for shrinking differences, numerical cancellation can be catastrophic. The numerical community developed an efficient method to overcome this by passing to the complex domain. This approach has been recently adopted by the optimization community and in this work we analyze the practically relevant setting of dealing with computational noise. To exemplify the possibilities we focus on the strongly-convex optimization setting and provide a variety of non-asymptotic results, corroborated by numerical experiments, and end with local non-convex optimization.

An accurate covariance matrix is essential for obtaining reliable cosmological results when using a Gaussian likelihood. In this paper we study the covariance of pseudo-$C_\ell$ estimates of tomographic cosmic shear power spectra. Using two existing publicly available codes in combination, we calculate the full covariance matrix, including mode-coupling contributions arising from both partial sky coverage and non-linear structure growth. For three different sky masks, we compare the theoretical covariance matrix to that estimated from publicly available N-body weak lensing simulations, finding good agreement. We find that as a more extreme sky cut is applied, a corresponding increase in both Gaussian off-diagonal covariance and non-Gaussian super-sample covariance is observed in both theory and simulations, in accordance with expectations. Studying the different contributions to the covariance in detail, we find that the Gaussian covariance dominates along the main diagonal and the closest off-diagonals, but further away from the main diagonal the super-sample covariance is dominant. Forming mock constraints in parameters describing matter clustering and dark energy, we find that neglecting non-Gaussian contributions to the covariance can lead to underestimating the true size of confidence regions by up to 70 per cent. The dominant non-Gaussian covariance component is the super-sample covariance, but neglecting the smaller connected non-Gaussian covariance can still lead to the underestimation of uncertainties by 10--20 per cent. A real cosmological analysis will require marginalisation over many nuisance parameters, which will decrease the relative importance of all cosmological contributions to the covariance, so these values should be taken as upper limits on the importance of each component.

Due to its highly oscillating solution, the Helmholtz equation is numerically challenging to solve. To obtain a reasonable solution, a mesh size that is much smaller than the reciprocal of the wavenumber is typically required (known as the pollution effect). High order schemes are desirable, because they are better in mitigating the pollution effect. In this paper, we present a sixth order compact finite difference method for 2D Helmholtz equations with singular sources, which can also handle any possible combinations of boundary conditions (Dirichlet, Neumann, and impedance) on a rectangular domain. To reduce the pollution effect, we propose a new pollution minimization strategy that is based on the average truncation error of plane waves. Our numerical experiments demonstrate the superiority of our proposed finite difference scheme with reduced pollution effect to several state-of-the-art finite difference schemes in the literature, particularly in the critical pre-asymptotic region where $\textsf{k} h$ is near $1$ with $\textsf{k}$ being the wavenumber and $h$ the mesh size.

Bayesian persuasion is a model for understanding strategic information revelation: an agent with an informational advantage, called a sender, strategically discloses information by sending signals to another agent, called a receiver. In algorithmic Bayesian persuasion, we are interested in efficiently designing the sender's signaling schemes that lead the receiver to take action in favor of the sender. This paper studies algorithmic Bayesian-persuasion settings where the receiver's feasible actions are specified by combinatorial constraints, e.g., matroids or paths in graphs. We first show that constant-factor approximation is NP-hard even in some special cases of matroids or paths. We then propose a polynomial-time algorithm for general matroids by assuming the number of states of nature to be a constant. We finally consider a relaxed notion of persuasiveness, called CCE-persuasiveness, and present a sufficient condition for polynomial-time approximability.

We analyze the convergence properties of the two-timescale fictitious play combining the classical fictitious play with the Q-learning for two-player zero-sum stochastic games with player-dependent learning rates. We show its almost sure convergence under the standard assumptions in two-timescale stochastic approximation methods when the discount factor is less than the product of the ratios of player-dependent step sizes. To this end, we formulate a novel Lyapunov function formulation and present a one-sided asynchronous convergence result.

We present a novel variant of fictitious play dynamics combining classical fictitious play with Q-learning for stochastic games and analyze its convergence properties in two-player zero-sum stochastic games. Our dynamics involves players forming beliefs on the opponent strategy and their own continuation payoff (Q-function), and playing a greedy best response by using the estimated continuation payoffs. Players update their beliefs from observations of opponent actions. A key property of the learning dynamics is that update of the beliefs on Q-functions occurs at a slower timescale than update of the beliefs on strategies. We show both in the model-based and model-free cases (without knowledge of player payoff functions and state transition probabilities), the beliefs on strategies converge to a stationary mixed Nash equilibrium of the zero-sum stochastic game.

Stochastic gradient descent with momentum (SGDM) is the dominant algorithm in many optimization scenarios, including convex optimization instances and non-convex neural network training. Yet, in the stochastic setting, momentum interferes with gradient noise, often leading to specific step size and momentum choices in order to guarantee convergence, set aside acceleration. Proximal point methods, on the other hand, have gained much attention due to their numerical stability and elasticity against imperfect tuning. Their stochastic accelerated variants though have received limited attention: how momentum interacts with the stability of (stochastic) proximal point methods remains largely unstudied. To address this, we focus on the convergence and stability of the stochastic proximal point algorithm with momentum (SPPAM), and show that SPPAM allows a faster linear convergence to a neighborhood compared to stochastic proximal point algorithm (SPPA) with a better contraction factor, under proper hyperparameter tuning. In terms of stability, we show that SPPAM depends on problem constants more favorably than SGDM, allowing a wider range of step size and momentum that lead to convergence.

Policy gradient (PG) methods are popular reinforcement learning (RL) methods where a baseline is often applied to reduce the variance of gradient estimates. In multi-agent RL (MARL), although the PG theorem can be naturally extended, the effectiveness of multi-agent PG (MAPG) methods degrades as the variance of gradient estimates increases rapidly with the number of agents. In this paper, we offer a rigorous analysis of MAPG methods by, firstly, quantifying the contributions of the number of agents and agents' explorations to the variance of MAPG estimators. Based on this analysis, we derive the optimal baseline (OB) that achieves the minimal variance. In comparison to the OB, we measure the excess variance of existing MARL algorithms such as vanilla MAPG and COMA. Considering using deep neural networks, we also propose a surrogate version of OB, which can be seamlessly plugged into any existing PG methods in MARL. On benchmarks of Multi-Agent MuJoCo and StarCraft challenges, our OB technique effectively stabilises training and improves the performance of multi-agent PPO and COMA algorithms by a significant margin.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司