In pursuit of more inclusive Vision-Language Models (VLMs), this study introduces a Large Multilingual Multimodal Model called PALO. PALO offers visual reasoning capabilities in 10 major languages, including English, Chinese, Hindi, Spanish, French, Arabic, Bengali, Russian, Urdu, and Japanese, that span a total of ~5B people (65% of the world population). Our approach involves a semi-automated translation approach to adapt the multimodal instruction dataset from English to the target languages using a fine-tuned Large Language Model, thereby ensuring high linguistic fidelity while allowing scalability due to minimal manual effort. The incorporation of diverse instruction sets helps us boost overall performance across multiple languages especially those that are underrepresented like Hindi, Arabic, Bengali, and Urdu. The resulting models are trained across three scales (1.7B, 7B and 13B parameters) to show the generalization and scalability where we observe substantial improvements compared to strong baselines. We also propose the first multilingual multimodal benchmark for the forthcoming approaches to evaluate their vision-language reasoning capabilities across languages. Code: //github.com/mbzuai-oryx/PALO.
This paper introduces the `Jacobi prior,' an alternative Bayesian method, that aims to address the computational challenges inherent in traditional techniques. It demonstrates that the Jacobi prior performs better than well-known methods like Lasso, Ridge, Elastic Net, and MCMC-based Horse-Shoe Prior, especially in predicting accurately. Additionally, We also show that the Jacobi prior is more than a hundred times faster than these methods while maintaining similar predictive accuracy. The method is implemented for Generalised Linear Models, Gaussian process regression, and classification, making it suitable for longitudinal/panel data analysis. The Jacobi prior shows it can handle partitioned data across servers worldwide, making it useful for distributed computing environments. As the method runs faster while still predicting accurately, it's good for organizations wanting to reduce their environmental impact and meet ESG standards. To show how well the Jacobi prior works, we did a detailed simulation study with four experiments, looking at statistical consistency, accuracy, and speed. Additionally, we present two empirical studies. First, we thoroughly evaluate Credit Risk by studying default probability using data from the U.S. Small Business Administration (SBA). Also, we use the Jacobi prior to classifying stars, quasars, and galaxies in a 3-class problem using multinational logit regression on Sloan Digital Sky Survey data. We use different filters as features. All codes and datasets for this paper are available in the following GitHub repository: //github.com/sourish-cmi/Jacobi-Prior/
This paper presents a new Python library called Automated Learning for Insightful Comparison and Evaluation (ALICE), which merges conventional feature selection and the concept of inter-rater agreeability in a simple, user-friendly manner to seek insights into black box Machine Learning models. The framework is proposed following an overview of the key concepts of interpretability in ML. The entire architecture and intuition of the main methods of the framework are also thoroughly discussed and results from initial experiments on a customer churn predictive modeling task are presented, alongside ideas for possible avenues to explore for the future. The full source code for the framework and the experiment notebooks can be found at: //github.com/anasashb/aliceHU
The origins of fiducial inference trace back to the 1930s when R. A. Fisher first introduced the concept as a response to what he perceived as a limitation of Bayesian inference - the requirement for a subjective prior distribution on model parameters in cases where no prior information was available. However, Fisher's initial fiducial approach fell out of favor as complications arose, particularly in multi-parameter problems. In the wake of 2000, amidst a renewed interest in contemporary adaptations of fiducial inference, generalized fiducial inference (GFI) emerged to extend Fisher's fiducial argument, providing a promising avenue for addressing numerous crucial and practical inference challenges. Nevertheless, the adoption of GFI has been limited due to its often demanding mathematical derivations and the necessity for implementing complex Markov Chain Monte Carlo algorithms. This complexity has impeded its widespread utilization and practical applicability. This paper presents a significant advancement by introducing an innovative variant of GFI designed to alleviate these challenges. Specifically, this paper proposes AutoGFI, an easily implementable algorithm that streamlines the application of GFI to a broad spectrum of inference problems involving additive noise. AutoGFI can be readily implemented as long as a fitting routine is available, making it accessible to a broader audience of researchers and practitioners. To demonstrate its effectiveness, AutoGFI is applied to three contemporary and challenging problems: tensor regression, matrix completion, and regression with network cohesion. These case studies highlight the immense potential of GFI and illustrate AutoGFI's promising performance when compared to specialized solutions for these problems. Overall, this research paves the way for a more accessible and powerful application of GFI in a range of practical domains.
The emergence of various adapters, including Low-Rank Adaptation (LoRA) applied from the field of natural language processing, has allowed diffusion models to personalize image generation at a low cost. However, due to the various challenges including limited datasets and shortage of regularization and computation resources, adapter training often results in unsatisfactory outcomes, leading to the corruption of the backbone model's prior knowledge. One of the well known phenomena is the loss of diversity in object generation, especially within the same class which leads to generating almost identical objects with minor variations. This poses challenges in generation capabilities. To solve this issue, we present Contrastive Adapter Training (CAT), a simple yet effective strategy to enhance adapter training through the application of CAT loss. Our approach facilitates the preservation of the base model's original knowledge when the model initiates adapters. Furthermore, we introduce the Knowledge Preservation Score (KPS) to evaluate CAT's ability to keep the former information. We qualitatively and quantitatively compare CAT's improvement. Finally, we mention the possibility of CAT in the aspects of multi-concept adapter and optimization.
In this study, we introduce CT-LLM, a 2B large language model (LLM) that illustrates a pivotal shift towards prioritizing the Chinese language in developing LLMs. Uniquely initiated from scratch, CT-LLM diverges from the conventional methodology by primarily incorporating Chinese textual data, utilizing an extensive corpus of 1,200 billion tokens, including 800 billion Chinese tokens, 300 billion English tokens, and 100 billion code tokens. This strategic composition facilitates the model's exceptional proficiency in understanding and processing Chinese, a capability further enhanced through alignment techniques. Demonstrating remarkable performance on the CHC-Bench, CT-LLM excels in Chinese language tasks, and showcases its adeptness in English through SFT. This research challenges the prevailing paradigm of training LLMs predominantly on English corpora and then adapting them to other languages, broadening the horizons for LLM training methodologies. By open-sourcing the full process of training a Chinese LLM, including a detailed data processing procedure with the obtained Massive Appropriate Pretraining Chinese Corpus (MAP-CC), a well-chosen multidisciplinary Chinese Hard Case Benchmark (CHC-Bench), and the 2B-size Chinese Tiny LLM (CT-LLM), we aim to foster further exploration and innovation in both academia and industry, paving the way for more inclusive and versatile language models.
We present a novel end-to-end algorithm (PoCo) for the indoor RGB-D place recognition task, aimed at identifying the most likely match for a given query frame within a reference database. The task presents inherent challenges attributed to the constrained field of view and limited range of perception sensors. We propose a new network architecture, which generalizes the recent Context of Clusters (CoCs) to extract global descriptors directly from the noisy point clouds through end-to-end learning. Moreover, we develop the architecture by integrating both color and geometric modalities into the point features to enhance the global descriptor representation. We conducted evaluations on public datasets ScanNet-PR and ARKit with 807 and 5047 scenarios, respectively. PoCo achieves SOTA performance: on ScanNet-PR, we achieve R@1 of 64.63%, a 5.7% improvement from the best-published result CGis (61.12%); on Arkit, we achieve R@1 of 45.12%, a 13.3% improvement from the best-published result CGis (39.82%). In addition, PoCo shows higher efficiency than CGis in inference time (1.75X-faster), and we demonstrate the effectiveness of PoCo in recognizing places within a real-world laboratory environment.
This study introduces the Quantum Federated Neural Network for Financial Fraud Detection (QFNN-FFD), a cutting-edge framework merging Quantum Machine Learning (QML) and quantum computing with Federated Learning (FL) to innovate financial fraud detection. Using quantum technologies' computational power and FL's data privacy, QFNN-FFD presents a secure, efficient method for identifying fraudulent transactions. Implementing a dual-phase training model across distributed clients surpasses existing methods in performance. QFNN-FFD significantly improves fraud detection and ensures data confidentiality, marking a significant advancement in fintech solutions and establishing a new standard for privacy-focused fraud detection.
We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81 % of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.