亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing demand for data storage has prompted the exploration of new techniques, with molecular data storage being a promising alternative. In this work, we develop coding schemes for a new storage paradigm that can be represented as a collection of two-dimensional arrays. Motivated by error patterns observed in recent prototype architectures, our study focuses on correcting erasures in the last few symbols of each row, and also correcting arbitrary deletions across rows. We present code constructions and explicit encoders and decoders that are shown to be nearly optimal in many scenarios. We show that the new coding schemes are capable of effectively mitigating these errors, making these emerging storage platforms potentially promising solutions.

相關內容

The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles. In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed. The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data. The effectiveness of the approach is assessed on large-scale datasets of real-world traffic scenarios, showing that our model outperforms several well-established methods in terms of prediction accuracy. By the incorporation of differential motion constraints on the model output, we illustrate that our model is capable of generating a diverse set of realistic future trajectories. Through the use of an interaction-aware guidance signal, we further demonstrate that the model can be adapted to predict the behavior of less cooperative agents, emphasizing its practical applicability under uncertain traffic conditions.

The process of revising (or constructing) a policy at execution time -- known as decision-time planning -- has been key to achieving superhuman performance in perfect-information games like chess and Go. A recent line of work has extended decision-time planning to imperfect-information games, leading to superhuman performance in poker. However, these methods involve solving subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence. In this update-equivalence framework, decision-time planning algorithms replicate the updates of last-iterate algorithms, which need not rely on public information. This facilitates scalability to games with large amounts of non-public information. Using this framework, we derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent. We validate the performance of these algorithms in cooperative and adversarial domains, notably in Hanabi, the standard benchmark for search in fully cooperative imperfect-information games. Here, our mirror descent approach exceeds or matches the performance of public information-based search while using two orders of magnitude less search time. This is the first instance of a non-public-information-based algorithm outperforming public-information-based approaches in a domain they have historically dominated.

Kernel conditional mean embeddings (CMEs) offer a powerful framework for representing conditional distribution, but they often face scalability and expressiveness challenges. In this work, we propose a new method that effectively combines the strengths of deep learning with CMEs in order to address these challenges. Specifically, our approach leverages the end-to-end neural network (NN) optimization framework using a kernel-based objective. This design circumvents the computationally expensive Gram matrix inversion required by current CME methods. To further enhance performance, we provide efficient strategies to optimize the remaining kernel hyperparameters. In conditional density estimation tasks, our NN-CME hybrid achieves competitive performance and often surpasses existing deep learning-based methods. Lastly, we showcase its remarkable versatility by seamlessly integrating it into reinforcement learning (RL) contexts. Building on Q-learning, our approach naturally leads to a new variant of distributional RL methods, which demonstrates consistent effectiveness across different environments.

ReachBot, a proposed robotic platform, employs extendable booms as limbs for mobility in challenging environments, such as martian caves. When attached to the environment, ReachBot acts as a parallel robot, with reconfiguration driven by the ability to detach and re-place the booms. This ability enables manipulation-focused scientific objectives: for instance, through operating tools, or handling and transporting samples. To achieve these capabilities, we develop a two-part solution, optimizing for robustness against task uncertainty and stochastic failure modes. First, we present a mixed-integer stance planner to determine the positioning of ReachBot's booms to maximize the task wrench space about the nominal point(s). Second, we present a convex tension planner to determine boom tensions for the desired task wrenches, accounting for the probabilistic nature of microspine grasping. We demonstrate improvements in key robustness metrics from the field of dexterous manipulation, and show a large increase in the volume of the manipulation workspace. Finally, we employ Monte-Carlo simulation to validate the robustness of these methods, demonstrating good performance across a range of randomized tasks and environments, and generalization to cable-driven morphologies. We make our code available at our project webpage, //stanfordasl.github.io/reachbot_manipulation/

Image segmentation is one of the most fundamental problems in computer vision and has drawn a lot of attentions due to its vast applications in image understanding and autonomous driving. However, designing effective and efficient segmentation neural architectures is a labor-intensive process that may require lots of trials by human experts. In this paper, we address the challenge of integrating multi-head self-attention into high resolution representation CNNs efficiently, by leveraging architecture search. Manually replacing convolution layers with multi-head self-attention is non-trivial due to the costly overhead in memory to maintain high resolution. By contrast, we develop a multi-target multi-branch supernet method, which not only fully utilizes the advantages of high-resolution features, but also finds the proper location for placing multi-head self-attention module. Our search algorithm is optimized towards multiple objective s (e.g., latency and mIoU) and capable of finding architectures on Pareto frontier with arbitrary number of branches in a single search. We further present a series of model via Hybrid Convolutional-Transformer Architecture Search (HyCTAS) method that searched for the best hybrid combination of light-weight convolution layers and memory-efficient self-attention layers between branches from different resolutions and fuse to high resolution for both efficiency and effectiveness. Extensive experiments demonstrate that HyCTAS outperforms previous methods on semantic segmentation task. Code and models are available at \url{//github.com/MarvinYu1995/HyCTAS}.

In recent research, significant attention has been devoted to the open-vocabulary object detection task, aiming to generalize beyond the limited number of classes labeled during training and detect objects described by arbitrary category names at inference. Compared with conventional object detection, open vocabulary object detection largely extends the object detection categories. However, it relies on calculating the similarity between image regions and a set of arbitrary category names with a pretrained vision-and-language model. This implies that, despite its open-set nature, the task still needs the predefined object categories during the inference stage. This raises the question: What if we do not have exact knowledge of object categories during inference? In this paper, we call such a new setting as generative open-ended object detection, which is a more general and practical problem. To address it, we formulate object detection as a generative problem and propose a simple framework named GenerateU, which can detect dense objects and generate their names in a free-form way. Particularly, we employ Deformable DETR as a region proposal generator with a language model translating visual regions to object names. To assess the free-form object detection task, we introduce an evaluation method designed to quantitatively measure the performance of generative outcomes. Extensive experiments demonstrate strong zero-shot detection performance of our GenerateU. For example, on the LVIS dataset, our GenerateU achieves comparable results to the open-vocabulary object detection method GLIP, even though the category names are not seen by GenerateU during inference. Code is available at: // github.com/FoundationVision/GenerateU .

This paper develops an approach to language identification in which the set of languages considered by the model depends on the geographic origin of the text in question. Given that many digital corpora can be geo-referenced at the country level, this paper formulates 16 region-specific models, each of which contains the languages expected to appear in countries within that region. These regional models also each include 31 widely-spoken international languages in order to ensure coverage of these linguae francae regardless of location. An upstream evaluation using traditional language identification testing data shows an improvement in f-score ranging from 1.7 points (Southeast Asia) to as much as 10.4 points (North Africa). A downstream evaluation on social media data shows that this improved performance has a significant impact on the language labels which are applied to large real-world corpora. The result is a highly-accurate model that covers 916 languages at a sample size of 50 characters, the performance improved by incorporating geographic information into the model.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司