亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Metaverse, a burgeoning technological trend that combines virtual and augmented reality, provides users with a fully digital environment where they can assume a virtual identity through a digital avatar and interact with others as they were in the real world. Its applications span diverse domains such as economy (with its entry into the cryptocurrency field), finance, social life, working environment, healthcare, real estate, and education. During the COVID-19 and post-COVID-19 era, universities have rapidly adopted e-learning technologies to provide students with online access to learning content and platforms, rendering previous considerations on integrating such technologies or preparing institutional infrastructures virtually obsolete. In light of this context, the present study proposes a framework for analyzing university students' acceptance and intention to use metaverse technologies in education, drawing upon the Technology Acceptance Model (TAM). The study aims to investigate the relationship between students' intention to use metaverse technologies in education, hereafter referred to as MetaEducation, and selected TAM constructs, including Attitude, Perceived Usefulness, Perceived Ease of Use, Self-efficacy of metaverse technologies in education, and Subjective Norm. Notably, Self-efficacy and Subjective Norm have a positive influence on Attitude and Perceived Usefulness, whereas Perceived Ease of Use does not exhibit a strong correlation with Attitude or Perceived Usefulness. The authors postulate that the weak associations between the study's constructs may be attributed to limited knowledge regarding MetaEducation and its potential benefits. Further investigation and analysis of the study's proposed model are warranted to comprehensively understand the complex dynamics involved in the acceptance and utilization of MetaEducation technologies in the realm of higher education

相關內容

軟件工程評估(Evaluation and Assessment in Software Engineering,EASE)會議是一個國際領先的會議場所,學術界和實踐者可以在此展示和討論他們對基于證據的軟件工程的研究及其對軟件實踐的影響。第23屆EASE將于2019年4月在丹麥哥本哈根舉行,由哥本哈根IT大學主辦。EASE 2019歡迎向不同領域提交高質量的研究報告:完整的研究論文、短篇論文和手工藝品、新興成果和愿景、行業軌跡、博士研討會、海報。官網鏈接: · CRAFT · 掩碼 · Learning · MoDELS ·
2024 年 1 月 17 日

With growing concerns surrounding privacy and regulatory compliance, the concept of machine unlearning has gained prominence, aiming to selectively forget or erase specific learned information from a trained model. In response to this critical need, we introduce a novel approach called Attack-and-Reset for Unlearning (ARU). This algorithm leverages meticulously crafted adversarial noise to generate a parameter mask, effectively resetting certain parameters and rendering them unlearnable. ARU outperforms current state-of-the-art results on two facial machine-unlearning benchmark datasets, MUFAC and MUCAC. In particular, we present the steps involved in attacking and masking that strategically filter and re-initialize network parameters biased towards the forget set. Our work represents a significant advancement in rendering data unexploitable to deep learning models through parameter re-initialization, achieved by harnessing adversarial noise to craft a mask.

Despite recent availability of large transcribed Kinyarwanda speech data, achieving robust speech recognition for Kinyarwanda is still challenging. In this work, we show that using self-supervised pre-training, following a simple curriculum schedule during fine-tuning and using semi-supervised learning to leverage large unlabelled speech data significantly improve speech recognition performance for Kinyarwanda. Our approach focuses on using public domain data only. A new studio-quality speech dataset is collected from a public website, then used to train a clean baseline model. The clean baseline model is then used to rank examples from a more diverse and noisy public dataset, defining a simple curriculum training schedule. Finally, we apply semi-supervised learning to label and learn from large unlabelled data in four successive generations. Our final model achieves 3.2% word error rate (WER) on the new dataset and 15.9% WER on Mozilla Common Voice benchmark, which is state-of-the-art to the best of our knowledge. Our experiments also indicate that using syllabic rather than character-based tokenization results in better speech recognition performance for Kinyarwanda.

Large Language Models (LLMs), with their flexible generation abilities, can be powerful data sources in domains with few or no available corpora. However, problems like hallucinations and biases limit such applications. In this case study, we pick nutrition counselling, a domain lacking any public resource, and show that high-quality datasets can be gathered by combining LLMs, crowd-workers and nutrition experts. We first crowd-source and cluster a novel dataset of diet-related issues, then work with experts to prompt ChatGPT into producing related supportive text. Finally, we let the experts evaluate the safety of the generated text. We release HAI-coaching, the first expert-annotated nutrition counselling dataset containing ~2.4K dietary struggles from crowd workers, and ~97K related supportive texts generated by ChatGPT. Extensive analysis shows that ChatGPT while producing highly fluent and human-like text, also manifests harmful behaviours, especially in sensitive topics like mental health, making it unsuitable for unsupervised use.

With the fast development of modern microscopes and bioimaging techniques, an unprecedentedly large amount of imaging data are being generated, stored, analyzed, and even shared through networks. The size of the data poses great challenges for current data infrastructure. One common way to reduce the data size is by image compression. This present study analyzes classic and deep learning based image compression methods, and their impact on deep learning based image processing models. Deep learning based label-free prediction models (i.e., predicting fluorescent images from bright field images) are used as an example application for comparison and analysis. Effective image compression methods could help reduce the data size significantly without losing necessary information, and therefore reduce the burden on data management infrastructure and permit fast transmission through the network for data sharing or cloud computing. To compress images in such a wanted way, multiple classical lossy image compression techniques are compared to several AI-based compression models provided by and trained with the CompressAI toolbox using python. These different compression techniques are compared in compression ratio, multiple image similarity measures and, most importantly, the prediction accuracy from label-free models on compressed images. We found that AI-based compression techniques largely outperform the classic ones and will minimally affect the downstream label-free task in 2D cases. In the end, we hope the present study could shed light on the potential of deep learning based image compression and the impact of image compression on downstream deep learning based image analysis models.

Vein recognition has received increasing attention due to its high security and privacy. Recently, deep neural networks such as Convolutional neural networks (CNN) and Transformers have been introduced for vein recognition and achieved state-of-the-art performance. Despite the recent advances, however, existing solutions for finger-vein feature extraction are still not optimal due to scarce training image samples. To overcome this problem, in this paper, we propose an adversarial masking contrastive learning (AMCL) approach, that generates challenging samples to train a more robust contrastive learning model for the downstream palm-vein recognition task, by alternatively optimizing the encoder in the contrastive learning model and a set of latent variables. First, a huge number of masks are generated to train a robust generative adversarial network (GAN). The trained generator transforms a latent variable from the latent variable space into a mask space. Then, we combine the trained generator with a contrastive learning model to obtain our AMCL, where the generator produces challenging masking images to increase the contrastive loss and the contrastive learning model is trained based on the harder images to learn a more robust feature representation. After training, the trained encoder in the contrastive learning model is combined with a classification layer to build a classifier, which is further fine-tuned on labeled training data for vein recognition. The experimental results on three databases demonstrate that our approach outperforms existing contrastive learning approaches in terms of improving identification accuracy of vein classifiers and achieves state-of-the-art recognition results.

We address the challenge of sound propagation simulations in 3D virtual rooms with moving sources, which have applications in virtual/augmented reality, game audio, and spatial computing. Solutions to the wave equation can describe wave phenomena such as diffraction and interference. However, simulating them using conventional numerical discretization methods with hundreds of source and receiver positions is intractable, making stimulating a sound field with moving sources impractical. To overcome this limitation, we propose using deep operator networks to approximate linear wave-equation operators. This enables the rapid prediction of sound propagation in realistic 3D acoustic scenes with moving sources, achieving millisecond-scale computations. By learning a compact surrogate model, we avoid the offline calculation and storage of impulse responses for all relevant source/listener pairs. Our experiments, including various complex scene geometries, show good agreement with reference solutions, with root mean squared errors ranging from 0.02 Pa to 0.10 Pa. Notably, our method signifies a paradigm shift as no prior machine learning approach has achieved precise predictions of complete wave fields within realistic domains. We anticipate that our findings will drive further exploration of deep neural operator methods, advancing research in immersive user experiences within virtual environments.$

Fixed point lattice actions are designed to have continuum classical properties unaffected by discretization effects and reduced lattice artifacts at the quantum level. They provide a possible way to extract continuum physics with coarser lattices, thereby allowing to circumvent problems with critical slowing down and topological freezing toward the continuum limit. A crucial ingredient for practical applications is to find an accurate and compact parametrization of a fixed point action, since many of its properties are only implicitly defined. Here we use machine learning methods to revisit the question of how to parametrize fixed point actions. In particular, we obtain a fixed point action for four-dimensional SU(3) gauge theory using convolutional neural networks with exact gauge invariance. The large operator space allows us to find superior parametrizations compared to previous studies, a necessary first step for future Monte Carlo simulations.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司