亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study presents new closed-form estimators for the Dirichlet and the Multivariate Gamma distribution families, whose maximum likelihood estimator cannot be explicitly derived. The methodology builds upon the score-adjusted estimators for the Beta and Gamma distributions, extending their applicability to the Dirichlet and Multivariate Gamma distributions. Expressions for the asymptotic variance-covariance matrices are provided, demonstrating the superior performance of score-adjusted estimators over the traditional moment ones. Leveraging well-established connections between Dirichlet and Multivariate Gamma distributions, a novel class of estimators for the latter is introduced, referred to as "Dirichlet-based moment-type estimators". The general asymptotic variance-covariance matrix form for this estimator class is derived. To facilitate the application of these innovative estimators, an R package called estimators is developed and made publicly available.

相關內容

Goal representation affects the performance of Hierarchical Reinforcement Learning (HRL) algorithms by decomposing the complex learning problem into easier subtasks. Recent studies show that representations that preserve temporally abstract environment dynamics are successful in solving difficult problems and provide theoretical guarantees for optimality. These methods however cannot scale to tasks where environment dynamics increase in complexity i.e. the temporally abstract transition relations depend on larger number of variables. On the other hand, other efforts have tried to use spatial abstraction to mitigate the previous issues. Their limitations include scalability to high dimensional environments and dependency on prior knowledge. In this paper, we propose a novel three-layer HRL algorithm that introduces, at different levels of the hierarchy, both a spatial and a temporal goal abstraction. We provide a theoretical study of the regret bounds of the learned policies. We evaluate the approach on complex continuous control tasks, demonstrating the effectiveness of spatial and temporal abstractions learned by this approach.

In causal discovery, non-Gaussianity has been used to characterize the complete configuration of a Linear Non-Gaussian Acyclic Model (LiNGAM), encompassing both the causal ordering of variables and their respective connection strengths. However, LiNGAM can only deal with the finite-dimensional case. To expand this concept, we extend the notion of variables to encompass vectors and even functions, leading to the Functional Linear Non-Gaussian Acyclic Model (Func-LiNGAM). Our motivation stems from the desire to identify causal relationships in brain-effective connectivity tasks involving, for example, fMRI and EEG datasets. We demonstrate why the original LiNGAM fails to handle these inherently infinite-dimensional datasets and explain the availability of functional data analysis from both empirical and theoretical perspectives. {We establish theoretical guarantees of the identifiability of the causal relationship among non-Gaussian random vectors and even random functions in infinite-dimensional Hilbert spaces.} To address the issue of sparsity in discrete time points within intrinsic infinite-dimensional functional data, we propose optimizing the coordinates of the vectors using functional principal component analysis. Experimental results on synthetic data verify the ability of the proposed framework to identify causal relationships among multivariate functions using the observed samples. For real data, we focus on analyzing the brain connectivity patterns derived from fMRI data.

We review studies based on analytic and simulation methods for hierarchical performance analysis of Queueing Network - QN models, which result in an order of magnitude reduction in performance evaluation cost with respect to simulation. The computational cost at the lower level is reduced when the computer system is modeled as a product-form QN. A Continuous Time Markov Chain - CTMC or discrete-event simulation can then be used at the higher level. We first consider a multiprogrammed transaction - txn processing system with Poisson arrivals and predeclared locks requests. Txn throughputs obtained by the analysis of multiprogrammed computer systems serve as the transition rates in a higher level CTMC to determine txn response times. We next analyze a task system where task precedence relationships are specified by a directed acyclic graph to determine its makespan. Task service demands are specified on the devices of a computer system. The composition of tasks in execution determines txn throughputs, which serve as transition rates among the states of the higher level CTMC model. As a third example we consider the hierarchical simulation of a timesharing system with two user classes. Txn throughputs in processing various combinations of requests are obtained by analyzing a closed product-form QN model. A discrete event simulator is provided. More detailed QN modeling parameters, such as the distribution of the number of cycles in central server model - CSM affects the performance of a fork/join queueing system. This detail can be taken into account in Schwetman's hybrid simulation method, which counts remaining cycles in CSM. We propose an extension to hybrid simulation to adjust job service demands according to elapsed time, rather than counting cycles. An example where Equilibrium Point Analysis to reduce computaional cost is privided.

In the contemporary information era, significantly accelerated by the advent of Large-scale Language Models, the proliferation of scientific literature is reaching unprecedented levels. Researchers urgently require efficient tools for reading and summarizing academic papers, uncovering significant scientific literature, and employing diverse interpretative methodologies. To address this burgeoning demand, the role of automated scientific literature interpretation systems has become paramount. However, prevailing models, both commercial and open-source, confront notable challenges: they often overlook multimodal data, grapple with summarizing over-length texts, and lack diverse user interfaces. In response, we introduce an open-source multi-modal automated academic paper interpretation system (MMAPIS) with three-step process stages, incorporating LLMs to augment its functionality. Our system first employs the hybrid modality preprocessing and alignment module to extract plain text, and tables or figures from documents separately. It then aligns this information based on the section names they belong to, ensuring that data with identical section names are categorized under the same section. Following this, we introduce a hierarchical discourse-aware summarization method. It utilizes the extracted section names to divide the article into shorter text segments, facilitating specific summarizations both within and between sections via LLMs with specific prompts. Finally, we have designed four types of diversified user interfaces, including paper recommendation, multimodal Q\&A, audio broadcasting, and interpretation blog, which can be widely applied across various scenarios. Our qualitative and quantitative evaluations underscore the system's superiority, especially in scientific summarization, where it outperforms solutions relying solely on GPT-4.

This work studies learning from a synergy process of 3D Morphable Models (3DMM) and 3D facial landmarks to predict complete 3D facial geometry, including 3D alignment, face orientation, and 3D face modeling. Our synergy process leverages a representation cycle for 3DMM parameters and 3D landmarks. 3D landmarks can be extracted and refined from face meshes built by 3DMM parameters. We next reverse the representation direction and show that predicting 3DMM parameters from sparse 3D landmarks improves the information flow. Together we create a synergy process that utilizes the relation between 3D landmarks and 3DMM parameters, and they collaboratively contribute to better performance. We extensively validate our contribution on full tasks of facial geometry prediction and show our superior and robust performance on these tasks for various scenarios. Particularly, we adopt only simple and widely-used network operations to attain fast and accurate facial geometry prediction. Codes and data: //choyingw.github.io/works/SynergyNet/

The determinant lower bound of Lovasz, Spencer, and Vesztergombi [European Journal of Combinatorics, 1986] is a powerful general way to prove lower bounds on the hereditary discrepancy of a set system. In their paper, Lovasz, Spencer, and Vesztergombi asked if hereditary discrepancy can also be bounded from above by a function of the hereditary discrepancy. This was answered in the negative by Hoffman, and the largest known multiplicative gap between the two quantities for a set system of $m$ substes of a universe of size $n$ is on the order of $\max\{\log n, \sqrt{\log m}\}$. On the other hand, building on work of Matou\v{s}ek [Proceedings of the AMS, 2013], recently Jiang and Reis [SOSA, 2022] showed that this gap is always bounded up to constants by $\sqrt{\log(m)\log(n)}$. This is tight when $m$ is polynomial in $n$, but leaves open what happens for large $m$. We show that the bound of Jiang and Reis is tight for nearly the entire range of $m$. Our proof relies on a technique of amplifying discrepancy via taking Kronecker products, and on discrepancy lower bounds for a set system derived from the discrete Haar basis.

This research investigates the transferability of Automatic Speech Recognition (ASR)-robust Natural Language Understanding (NLU) models from controlled experimental conditions to practical, real-world applications. Focused on smart home automation commands in Urdu, the study assesses model performance under diverse noise profiles, linguistic variations, and ASR error scenarios. Leveraging the UrduBERT model, the research employs a systematic methodology involving real-world data collection, cross-validation, transfer learning, noise variation studies, and domain adaptation. Evaluation metrics encompass task-specific accuracy, latency, user satisfaction, and robustness to ASR errors. The findings contribute insights into the challenges and adaptability of ASR-robust NLU models in transcending controlled environments.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司