This paper is concerned with error estimates of the fully discrete generalized finite element method (GFEM) with optimal local approximation spaces for solving elliptic problems with heterogeneous coefficients. The local approximation spaces are constructed using eigenvectors of local eigenvalue problems solved by the finite element method on some sufficiently fine mesh with mesh size $h$. The error bound of the discrete GFEM approximation is proved to converge as $h\rightarrow 0$ towards that of the continuous GFEM approximation, which was shown to decay nearly exponentially in previous works. Moreover, even for fixed mesh size $h$, a nearly exponential rate of convergence of the local approximation errors with respect to the dimension of the local spaces is established. An efficient and accurate method for solving the discrete eigenvalue problems is proposed by incorporating the discrete $A$-harmonic constraint directly into the eigensolver. Numerical experiments are carried out to confirm the theoretical results and to demonstrate the effectiveness of the method.
The asymptotic behaviour of Linear Spectral Statistics (LSS) of the smoothed periodogram estimator of the spectral coherency matrix of a complex Gaussian high-dimensional time series $(\y_n)_{n \in \mathbb{Z}}$ with independent components is studied under the asymptotic regime where the sample size $N$ converges towards $+\infty$ while the dimension $M$ of $\y$ and the smoothing span of the estimator grow to infinity at the same rate in such a way that $\frac{M}{N} \rightarrow 0$. It is established that, at each frequency, the estimated spectral coherency matrix is close from the sample covariance matrix of an independent identically $\mathcal{N}_{\mathbb{C}}(0,\I_M)$ distributed sequence, and that its empirical eigenvalue distribution converges towards the Marcenko-Pastur distribution. This allows to conclude that each LSS has a deterministic behaviour that can be evaluated explicitly. Using concentration inequalities, it is shown that the order of magnitude of the supremum over the frequencies of the deviation of each LSS from its deterministic approximation is of the order of $\frac{1}{M} + \frac{\sqrt{M}}{N}+ (\frac{M}{N})^{3}$ where $N$ is the sample size. Numerical simulations supports our results.
We study the problem of density estimation for a random vector ${\boldsymbol X}$ in $\mathbb R^d$ with probability density $f(\boldsymbol x)$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. The optimal spanning tree $T^*$ is the spanning tree $T$, for which the Kullback-Leibler divergence of $f$ and $f_{T}$ is the smallest. From i.i.d. data we identify the optimal tree $T^*$ and computationally efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has that $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz continuous $f$ with bounded support, $\mathbb E\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\}=O(n^{-1/4})$.
In sparse estimation, such as fused lasso and convex clustering, we apply either the proximal gradient method or the alternating direction method of multipliers (ADMM) to solve the problem. It takes time to include matrix division in the former case, while an efficient method such as FISTA (fast iterative shrinkage-thresholding algorithm) has been developed in the latter case. This paper proposes a general method for converting the ADMM solution to the proximal gradient method, assuming that assumption that the derivative of the objective function is Lipschitz continuous. Then, we apply it to sparse estimation problems, such as sparse convex clustering and trend filtering, and we show by numerical experiments that we can obtain a significant improvement in terms of efficiency.
We propose an approach to saddle point optimization relying only on oracles that solve minimization problems approximately. We analyze its convergence property on a strongly convex--concave problem and show its linear convergence toward the global min--max saddle point. Based on the convergence analysis, we develop a heuristic approach to adapt the learning rate. An implementation of the developed approach using the (1+1)-CMA-ES as the minimization oracle, namely Adversarial-CMA-ES, is shown to outperform several existing approaches on test problems. Numerical evaluation confirms the tightness of the theoretical convergence rate bound as well as the efficiency of the learning rate adaptation mechanism. As an example of real-world problems, the suggested optimization method is applied to automatic berthing control problems under model uncertainties, showing its usefulness in obtaining solutions robust to uncertainty.
We consider the problem of scheduling to minimize mean response time in M/G/1 queues where only estimated job sizes (processing times) are known to the scheduler, where a job of true size $s$ has estimated size in the interval $[\beta s, \alpha s]$ for some $\alpha \geq \beta > 0$. We evaluate each scheduling policy by its approximation ratio, which we define to be the ratio between its mean response time and that of Shortest Remaining Processing Time (SRPT), the optimal policy when true sizes are known. Our question: is there a scheduling policy that (a) has approximation ratio near 1 when $\alpha$ and $\beta$ are near 1, (b) has approximation ratio bounded by some function of $\alpha$ and $\beta$ even when they are far from 1, and (c) can be implemented without knowledge of $\alpha$ and $\beta$? We first show that naively running SRPT using estimated sizes in place of true sizes is not such a policy: its approximation ratio can be arbitrarily large for any fixed $\beta < 1$. We then provide a simple variant of SRPT for estimated sizes that satisfies criteria (a), (b), and (c). In particular, we prove its approximation ratio approaches 1 uniformly as $\alpha$ and $\beta$ approach 1. This is the first result showing this type of convergence for M/G/1 scheduling. We also study the Preemptive Shortest Job First (PSJF) policy, a cousin of SRPT. We show that, unlike SRPT, naively running PSJF using estimated sizes in place of true sizes satisfies criteria (b) and (c), as well as a weaker version of (a).
This paper is concerned with the phase estimation algorithm in quantum computing algorithms, especially the scenarios where (1) the input vector is not an eigenvector; (2) the unitary operator is not exactly implemented; (3) random approximations are used for the unitary operator, e.g., the QDRIFT method \cite{campbell2019random}. We characterize the probability of computing the phase values in terms of the consistency error, including the residual error, Trotter splitting error, or statistical error.
In this paper, we study the learning rate of generalized Bayes estimators in a general setting where the hypothesis class can be uncountable and have an irregular shape, the loss function can have heavy tails, and the optimal hypothesis may not be unique. We prove that under the multi-scale Bernstein's condition, the generalized posterior distribution concentrates around the set of optimal hypotheses and the generalized Bayes estimator can achieve fast learning rate. Our results are applied to show that the standard Bayesian linear regression is robust to heavy-tailed distributions.
We present a new class of estimators of Shannon entropy for severely undersampled discrete distributions. It is based on a generalization of an estimator proposed by T. Schuermann, which itself is a generalization of an estimator proposed by myself in arXiv:physics/0307138. For a special set of parameters they are completely free of bias and have a finite variance, something with is widely believed to be impossible. We present also detailed numerical tests where we compare them with other recent estimators and with exact results, and point out a clash with Bayesian estimators for mutual information.
Many representative graph neural networks, $e.g.$, GPR-GNN and ChebyNet, approximate graph convolutions with graph spectral filters. However, existing work either applies predefined filter weights or learns them without necessary constraints, which may lead to oversimplified or ill-posed filters. To overcome these issues, we propose $\textit{BernNet}$, a novel graph neural network with theoretical support that provides a simple but effective scheme for designing and learning arbitrary graph spectral filters. In particular, for any filter over the normalized Laplacian spectrum of a graph, our BernNet estimates it by an order-$K$ Bernstein polynomial approximation and designs its spectral property by setting the coefficients of the Bernstein basis. Moreover, we can learn the coefficients (and the corresponding filter weights) based on observed graphs and their associated signals and thus achieve the BernNet specialized for the data. Our experiments demonstrate that BernNet can learn arbitrary spectral filters, including complicated band-rejection and comb filters, and it achieves superior performance in real-world graph modeling tasks.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.