亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the non-uniform mesh. Then truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as $\min\{4-\alpha,r\alpha\}$ and $\frac{4-\alpha}{\alpha}$, respectively, where $\alpha\in(0,1)$ is the order of fractional derivative and $r\geq 1$ is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general $r$. Then we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for $r=1$, is analyzed for non-smooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.

相關內容

We consider the problem of obtaining effective representations for the solutions of linear, vector-valued stochastic differential equations (SDEs) driven by non-Gaussian pure-jump L\'evy processes, and we show how such representations lead to efficient simulation methods. The processes considered constitute a broad class of models that find application across the physical and biological sciences, mathematics, finance and engineering. Motivated by important relevant problems in statistical inference, we derive new, generalised shot-noise simulation methods whenever a normal variance-mean (NVM) mixture representation exists for the driving L\'evy process, including the generalised hyperbolic, normal-Gamma, and normal tempered stable cases. Simple, explicit conditions are identified for the convergence of the residual of a truncated shot-noise representation to a Brownian motion in the case of the pure L\'evy process, and to a Brownian-driven SDE in the case of the L\'evy-driven SDE. These results provide Gaussian approximations to the small jumps of the process under the NVM representation. The resulting representations are of particular importance in state inference and parameter estimation for L\'evy-driven SDE models, since the resulting conditionally Gaussian structures can be readily incorporated into latent variable inference methods such as Markov chain Monte Carlo (MCMC), Expectation-Maximisation (EM), and sequential Monte Carlo.

We introduce a semi-explicit time-stepping scheme of second order for linear poroelasticity satisfying a weak coupling condition. Here, semi-explicit means that the system, which needs to be solved in each step, decouples and hence improves the computational efficiency. The construction and the convergence proof are based on the connection to a differential equation with two time delays, namely one and two times the step size. Numerical experiments confirm the theoretical results and indicate the applicability to higher-order schemes.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.

Two-level stochastic optimization formulations have become instrumental in a number of machine learning contexts such as continual learning, neural architecture search, adversarial learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems become challenging in optimization or learning scenarios where the number of variables is high or there are constraints. In this paper, we introduce a bilevel stochastic gradient method for bilevel problems with nonlinear and possibly nonconvex lower-level constraints. We also present a comprehensive convergence theory that addresses both the lower-level unconstrained and constrained cases and covers all inexact calculations of the adjoint gradient (also called hypergradient), such as the inexact solution of the lower-level problem, inexact computation of the adjoint formula (due to the inexact solution of the adjoint equation or use of a truncated Neumann series), and noisy estimates of the gradients, Hessians, and Jacobians involved. To promote the use of bilevel optimization in large-scale learning, we have developed new low-rank practical bilevel stochastic gradient methods (BSG-N-FD and~BSG-1) that do not require second-order derivatives and, in the lower-level unconstrained case, dismiss any matrix-vector products.

We describe a quantum algorithm based on an interior point method for solving a linear program with $n$ inequality constraints on $d$ variables. The algorithm explicitly returns a feasible solution that is $\epsilon$-close to optimal, and runs in time $\sqrt{n}\, \mathrm{poly}(d,\log(n),\log(1/\varepsilon))$ which is sublinear for tall linear programs (i.e., $n \gg d$). Our algorithm speeds up the Newton step in the state-of-the-art interior point method of Lee and Sidford [FOCS '14]. This requires us to efficiently approximate the Hessian and gradient of the barrier function, and these are our main contributions. To approximate the Hessian, we describe a quantum algorithm for the spectral approximation of $A^T A$ for a tall matrix $A \in \mathbb R^{n \times d}$. The algorithm uses leverage score sampling in combination with Grover search, and returns a $\delta$-approximation by making $O(\sqrt{nd}/\delta)$ row queries to $A$. This generalizes an earlier quantum speedup for graph sparsification by Apers and de Wolf [FOCS '20]. To approximate the gradient, we use a recent quantum algorithm for multivariate mean estimation by Cornelissen, Hamoudi and Jerbi [STOC '22]. While a naive implementation introduces a dependence on the condition number of the Hessian, we avoid this by pre-conditioning our random variable using our quantum algorithm for spectral approximation.

We present an isogeometric collocation method for solving the biharmonic equation over planar bilinearly parameterized multi-patch domains. The developed approach is based on the use of the globally $C^4$-smooth isogeometric spline space [25] to approximate the solution of the considered partial differential equation, and proposes as collocation points two different choices, namely on the one hand the Greville points and on the other hand the so-called superconvergent points. Several examples demonstrate the potential of our collocation method for solving the biharmonic equation over planar multi-patch domains, and numerically study the convergence behavior of the two types of collocation points with respect to the $L^2$-norm as well as to equivalents of the $H^s$-seminorms for $1 \leq s \leq 4$.

Thanks to the singularity of the solution of linear subdiffusion problems, most time-stepping methods on uniform meshes can result in $O(\tau)$ accuracy where $\tau$ denotes the time step. The present work aims to discover the reason why some type of Crank-Nicolson schemes (the averaging Crank-Nicolson scheme) for the subdiffusion can only yield $O(\tau^\alpha)$$(\alpha<1)$ accuracy, which is much lower than the desired. The existing well developed error analysis for the subdiffusion, which has been successfully applied to many time-stepping methods such as the fractional BDF-$p (1\leq p\leq 6)$, all requires singular points be out of the path of contour integrals involved. The averaging Crank-Nicolson scheme in this work is quite natural but fails to meet this requirement. By resorting to the residue theorem, some novel sharp error analysis is developed in this study, upon which correction methods are further designed to obtain the optimal $O(\tau^2)$ accuracy. All results are verified by numerical tests.

This paper addresses the fundamental task of estimating covariance matrix functions for high-dimensional functional data/functional time series. We consider two functional factor structures encompassing either functional factors with scalar loadings or scalar factors with functional loadings, and postulate functional sparsity on the covariance of idiosyncratic errors after taking out the common unobserved factors. To facilitate estimation, we rely on the spiked matrix model and its functional generalization, and derive some novel asymptotic identifiability results, based on which we develop DIGIT and FPOET estimators under two functional factor models, respectively. Both estimators involve performing associated eigenanalysis to estimate the covariance of common components, followed by adaptive functional thresholding applied to the residual covariance. We also develop functional information criteria for the purpose of model selection. The convergence rates of estimated factors, loadings, and conditional sparse covariance matrix functions under various functional matrix norms, are respectively established for DIGIT and FPOET estimators. Numerical studies including extensive simulations and two real data applications on mortality rates and functional portfolio allocation are conducted to examine the finite-sample performance of the proposed methodology.

Quantifying the difference between two probability density functions, $p$ and $q$, using available data, is a fundamental problem in Statistics and Machine Learning. A usual approach for addressing this problem is the likelihood-ratio estimation (LRE) between $p$ and $q$, which -- to our best knowledge -- has been investigated mainly for the offline case. This paper contributes by introducing a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t \sim p, x'_t \sim q)$ are observed over time. The non-parametric nature of our approach has the advantage of being agnostic to the forms of $p$ and $q$. Moreover, we capitalize on the recent advances in Kernel Methods and functional minimization to develop an estimator that can be efficiently updated online. We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.

This paper investigates the multiple testing problem for high-dimensional sparse binary sequences, motivated by the crowdsourcing problem in machine learning. We study the empirical Bayes approach for multiple testing on the high-dimensional Bernoulli model with a conjugate spike and uniform slab prior. We first show that the hard thresholding rule deduced from the posterior distribution is suboptimal. Consequently, the $\ell$-value procedure constructed using this posterior tends to be overly conservative in estimating the false discovery rate (FDR). We then propose two new procedures based on $\adj\ell$-values and $q$-values to correct this issue. Sharp frequentist theoretical results are obtained, demonstrating that both procedures can effectively control the FDR under sparsity. Numerical experiments are conducted to validate our theory in finite samples. To our best knowledge, this work provides the first uniform FDR control result in multiple testing for high-dimensional sparse binary data.

北京阿比特科技有限公司