This paper addresses the challenges of distributed formation control in multiple mobile robots, introducing a novel approach that enhances real-world practicability. We first introduce a distributed estimator using a variable structure and cascaded design technique, eliminating the need for derivative information to improve the real time performance. Then, a kinematic tracking control method is developed utilizing a bioinspired neural dynamic-based approach aimed at providing smooth control inputs and effectively resolving the speed jump issue. Furthermore, to address the challenges for robots operating with completely unknown dynamics and disturbances, a learning-based robust dynamic controller is developed. This controller provides real time parameter estimates while maintaining its robustness against disturbances. The overall stability of the proposed method is proved with rigorous mathematical analysis. At last, multiple comprehensive simulation studies have shown the advantages and effectiveness of the proposed method.
Recent advances in robot skill learning have unlocked the potential to construct task-agnostic skill libraries, facilitating the seamless sequencing of multiple simple manipulation primitives (aka. skills) to tackle significantly more complex tasks. Nevertheless, determining the optimal sequence for independently learned skills remains an open problem, particularly when the objective is given solely in terms of the final geometric configuration rather than a symbolic goal. To address this challenge, we propose Logic-Skill Programming (LSP), an optimization-based approach that sequences independently learned skills to solve long-horizon tasks. We formulate a first-order extension of a mathematical program to optimize the overall cumulative reward of all skills within a plan, abstracted by the sum of value functions. To solve such programs, we leverage the use of Tensor Train to construct the value function space, and rely on alternations between symbolic search and skill value optimization to find the appropriate skill skeleton and optimal subgoal sequence. Experimental results indicate that the obtained value functions provide a superior approximation of cumulative rewards compared to state-of-the-art Reinforcement Learning methods. Furthermore, we validate LSP in three manipulation domains, encompassing both prehensile and non-prehensile primitives. The results demonstrate its capability to identify the optimal solution over the full logic and geometric path. The real-robot experiments showcase the effectiveness of our approach to cope with contact uncertainty and external disturbances in the real world.
Transparency and explainability in image classification are essential for establishing trust in machine learning models and detecting biases and errors. State-of-the-art explainability methods generate saliency maps to show where a specific class is identified, without providing a detailed explanation of the model's decision process. Striving to address such a need, we introduce a post-hoc method that explains the entire feature extraction process of a Convolutional Neural Network. These explanations include a layer-wise representation of the features the model extracts from the input. Such features are represented as saliency maps generated by clustering and merging similar feature maps, to which we associate a weight derived by generalizing Grad-CAM for the proposed methodology. To further enhance these explanations, we include a set of textual labels collected through a gamified crowdsourcing activity and processed using NLP techniques and Sentence-BERT. Finally, we show an approach to generate global explanations by aggregating labels across multiple images.
This paper explores the utilization of diffusion models and textual guidance for achieving localized editing of building facades, addressing the escalating demand for sophisticated editing methodologies in architectural design and urban planning. Leveraging the robust generative capabilities of diffusion models, this study presents a promising avenue for realistically synthesizing and modifying architectural facades. Through iterative diffusion and text descriptions, these models adeptly capture both the intricate global and local structures inherent in architectural facades, thus effectively navigating the complexity of such designs. Additionally, the paper examines the expansive potential of diffusion models in various facets, including the generation of novel facade designs, the enhancement of existing facades, and the realization of personalized customization. Despite their promise, diffusion models encounter obstacles such as computational resource constraints and data imbalances. To address these challenges, the study introduces the innovative Blended Latent Diffusion method for architectural facade editing, accompanied by a comprehensive visual analysis of its viability and efficacy. Through these endeavors, we aims to propel forward the field of architectural facade editing, contributing to its advancement and practical application.
This paper introduces Stochastic RAG--a novel approach for end-to-end optimization of retrieval-augmented generation (RAG) models that relaxes the simplifying assumptions of marginalization and document independence, made in most prior work. Stochastic RAG casts the retrieval process in RAG as a stochastic sampling without replacement process. Through this formulation, we employ straight-through Gumbel-top-k that provides a differentiable approximation for sampling without replacement and enables effective end-to-end optimization for RAG. We conduct extensive experiments on seven diverse datasets on a wide range of tasks, from open-domain question answering to fact verification to slot-filling for relation extraction and to dialogue systems. By applying this optimization method to a recent and effective RAG model, we advance state-of-the-art results on six out of seven datasets.
This paper considers a communication system where a source sends time-sensitive information to its destination via queues in tandem. We assume that the arrival process as well as the service process (of each server) are memoryless, and each of the servers has no buffer. For this setup, we develop a recursive framework to characterize the mean peak age of information (PAoI) under preemptive and non-preemptive policies with $N$ servers having different service rates. For the preemptive case, the proposed framework also allows to obtain mean age of information (AoI).
In this paper, we propose a novel model for a malware classification system based on Application Programming Interface (API) calls and opcodes, to improve classification accuracy. This system uses a novel design of combined Convolutional Neural Network and Long Short-Term Memory. We extract opcode sequences and API Calls from Windows malware samples for classification. We transform these features into N-grams (N = 2, 3, and 10)-gram sequences. Our experiments on a dataset of 9,749,57 samples produce high accuracy of 99.91% using the 8-gram sequences. Our method significantly improves the malware classification performance when using a wide range of recent deep learning architectures, leading to state-of-the-art performance. In particular, we experiment with ConvNeXt-T, ConvNeXt-S, RegNetY-4GF, RegNetY-8GF, RegNetY-12GF, EfficientNetV2, Sequencer2D-L, Swin-T, ViT-G/14, ViT-Ti, ViT-S, VIT-B, VIT-L, and MaxViT-B. Among these architectures, Swin-T and Sequencer2D-L architectures achieved high accuracies of 99.82% and 99.70%, respectively, comparable to our CNN-LSTM architecture although not surpassing it.
This paper investigates a joint active and passive beamforming design for distributed simultaneous transmitting and reflecting (STAR) reconfigurable intelligent surface (RIS) assisted multi-user (MU)- mutiple input single output (MISO) systems, where the energy splitting (ES) mode is considered for the STAR-RIS. We aim to design the active beamforming vectors at the base station (BS) and the passive beamforming at the STAR-RIS to maximize the user sum rate under transmitting power constraints. The formulated problem is non-convex and nontrivial to obtain the global optimum due to the coupling between active beamforming vectors and STAR-RIS phase shifts. To efficiently solve the problem, we propose a novel graph neural network (GNN)-based framework. Specifically, we first model the interactions among users and network entities are using a heterogeneous graph representation. A heterogeneous graph neural network (HGNN) implementation is then introduced to directly optimizes beamforming vectors and STAR-RIS coefficients with the system objective. Numerical results show that the proposed approach yields efficient performance compared to the previous benchmarks. Furthermore, the proposed GNN is scalable with various system configurations.
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.