亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While quantitative methods have been used to examine changes in word usage in books, studies have focused on overall trends, such as the shapes of narratives, which are independent of book length. We instead look at how words change over the course of a book as a function of the number of words, rather than the fraction of the book, completed at any given point; we define this measure as "cumulative word-time". Using ousiometrics, a reinterpretation of the valence-arousal-dominance framework of meaning obtained from semantic differentials, we convert text into time series of power and danger scores in cumulative word-time. Each time series is then decomposed using empirical mode decomposition into a sum of constituent oscillatory modes and a non-oscillatory trend. By comparing the decomposition of the original power and danger time series with those derived from shuffled text, we find that shorter books exhibit only a general trend, while longer books have fluctuations in addition to the general trend. These fluctuations typically have a period of a few thousand words regardless of the book length or library classification code, but vary depending on the content and structure of the book. Our findings suggest that, in the ousiometric sense, longer books are not expanded versions of shorter books, but are more similar in structure to a concatenation of shorter texts. Further, they are consistent with editorial practices that require longer texts to be broken down into sections, such as chapters. Our method also provides a data-driven denoising approach that works for texts of various lengths, in contrast to the more traditional approach of using large window sizes that may inadvertently smooth out relevant information, especially for shorter texts. These results open up avenues for future work in computational literary analysis, particularly the measurement of a basic unit of narrative.

相關內容

Recent years have seen tremendous advances in the theory and application of sequential experiments. While these experiments are not always designed with hypothesis testing in mind, researchers may still be interested in performing tests after the experiment is completed. The purpose of this paper is to aid in the development of optimal tests for sequential experiments by analyzing their asymptotic properties. Our key finding is that the asymptotic power function of any test can be matched by a test in a limit experiment where a Gaussian process is observed for each treatment, and inference is made for the drifts of these processes. This result has important implications, including a powerful sufficiency result: any candidate test only needs to rely on a fixed set of statistics, regardless of the type of sequential experiment. These statistics are the number of times each treatment has been sampled by the end of the experiment, along with final value of the score (for parametric models) or efficient influence function (for non-parametric models) process for each treatment. We then characterize asymptotically optimal tests under various restrictions such as unbiasedness, \alpha-spending constraints etc. Finally, we apply our our results to three key classes of sequential experiments: costly sampling, group sequential trials, and bandit experiments, and show how optimal inference can be conducted in these scenarios.

For many decades, advances in static verification have focused on linear integer arithmetic (LIA) programs. Many real-world programs are, however, written with non-linear integer arithmetic (NLA) expressions, such as programs that model physical events, control systems, or nonlinear activation functions in neural networks. While there are some approaches to reasoning about such NLA programs, still many verification tools fall short when trying to analyze them. To expand the scope of existing tools, we introduce a new method of converting programs with NLA expressions into semantically equivalent LIA programs via a technique we call dual rewriting. Dual rewriting discovers a linear replacement for an NLA Boolean expression (e.g. as found in conditional branching), simultaneously exploring both the positive and negative side of the condition, and using a combination of static validation and dynamic generalization of counterexamples. While perhaps surprising at first, this is often possible because the truth value of a Boolean NLA expression can be characterized in terms of a Boolean combination of linearly-described regions/intervals where the expression is true and those where it is false. The upshot is that rewriting NLA expressions to LIA expressions beforehand enables off-the-shelf LIA tools to be applied to the wider class of NLA programs. We built a new tool DrNLA and show it can discover LIA replacements for a variety of NLA programs. We then applied our work to branching-time verification of NLA programs, creating the first set of such benchmarks (92 in total) and showing that DrNLA's rewriting enable tools such as FuncTion and T2 to verify CTL properties of 42 programs that previously could not be verified. We also show a potential use of DrNLA assisting Frama-C in program slicing, and report that execution speed is not impacted much by rewriting.

Pretrained language models are publicly available and constantly finetuned for various real-life applications. As they become capable of grasping complex contextual information, harmful biases are likely increasingly intertwined with those models. This paper analyses gender bias in BERT models with two main contributions: First, a novel bias measure is introduced, defining biases as the difference in sentiment valuation of female and male sample versions. Second, we comprehensively analyse BERT's biases on the example of a realistic IMDB movie classifier. By systematically varying elements of the training pipeline, we can conclude regarding their impact on the final model bias. Seven different public BERT models in nine training conditions, i.e. 63 models in total, are compared. Almost all conditions yield significant gender biases. Results indicate that reflected biases stem from public BERT models rather than task-specific data, emphasising the weight of responsible usage.

Current perceptual similarity metrics operate at the level of pixels and patches. These metrics compare images in terms of their low-level colors and textures, but fail to capture mid-level similarities and differences in image layout, object pose, and semantic content. In this paper, we develop a perceptual metric that assesses images holistically. Our first step is to collect a new dataset of human similarity judgments over image pairs that are alike in diverse ways. Critical to this dataset is that judgments are nearly automatic and shared by all observers. To achieve this we use recent text-to-image models to create synthetic pairs that are perturbed along various dimensions. We observe that popular perceptual metrics fall short of explaining our new data, and we introduce a new metric, DreamSim, tuned to better align with human perception. We analyze how our metric is affected by different visual attributes, and find that it focuses heavily on foreground objects and semantic content while also being sensitive to color and layout. Notably, despite being trained on synthetic data, our metric generalizes to real images, giving strong results on retrieval and reconstruction tasks. Furthermore, our metric outperforms both prior learned metrics and recent large vision models on these tasks.

Artificial intelligence (AI) has been widely applied in drug discovery with a major task as molecular property prediction. Despite booming techniques in molecular representation learning, fundamentals underlying molecular property prediction haven't been carefully examined yet. In this study, we conducted a systematic evaluation on a collection of representative models using various molecular representations. In addition to the commonly used MoleculeNet benchmark datasets, we also assembled a suite of opioids-related datasets from ChEMBL and two additional activity datasets from literature. To interrogate the basic predictive power, we also assembled a series of descriptors datasets with varying sizes to evaluate the models' performance. In total, we trained 62,820 models, including 50,220 models on fixed representations, 4,200 models on SMILES sequences and 8,400 models on molecular graphs. We first conducted dataset profiling and highlighted the activity-cliffs issue in the opioids-related datasets. We then conducted rigorous model evaluation and addressed key questions therein. Furthermore, we examined inter-/intra-scaffold chemical space generalization and found that activity cliffs significantly can impact prediction performance. Based on extensive experimentation and rigorous comparison, representation learning models still show limited performance in molecular property prediction in most datasets. Finally, we explored into potential causes why representation learning models fail and highlighted the importance of dataset size. By taking this respite, we reflected on the fundamentals underlying molecular property prediction, the awareness of which can, hopefully, bring better AI techniques in this field.

The disruptive technology provided by large-scale pre-trained language models (LLMs) such as ChatGPT or GPT-4 has received significant attention in several application domains, often with an emphasis on high-level opportunities and concerns. This paper is the first examination regarding the use of LLMs for scientific simulations. We focus on four modeling and simulation tasks, each time assessing the expected benefits and limitations of LLMs while providing practical guidance for modelers regarding the steps involved. The first task is devoted to explaining the structure of a conceptual model to promote the engagement of participants in the modeling process. The second task focuses on summarizing simulation outputs, so that model users can identify a preferred scenario. The third task seeks to broaden accessibility to simulation platforms by conveying the insights of simulation visualizations via text. Finally, the last task evokes the possibility of explaining simulation errors and providing guidance to resolve them.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司