Granular jamming has recently become popular in soft robotics with widespread applications including industrial gripping, surgical robotics and haptics. Previous work has investigated the use of various techniques that exploit the nature of granular physics to improve jamming performance, however this is generally underrepresented in the literature compared to its potential impact. We present the first research that exploits vibration-based fluidisation actively (e.g., during a grip) to elicit bespoke performance from granular jamming grippers. We augment a conventional universal gripper with a computer-controllled audio exciter, which is attached to the gripper via a 3D printed mount, and build an automated test rig to allow large-scale data collection to explore the effects of active vibration. We show that vibration in soft jamming grippers can improve holding strength. In a series of studies, we show that frequency and amplitude of the waveforms are key determinants to performance, and that jamming performance is also dependent on temporal properties of the induced waveform. We hope to encourage further study focused on active vibrational control of jamming in soft robotics to improve performance and increase diversity of potential applications.
A new method, based on Bayesian Networks, to estimate propensity scores is proposed with the purpose to draw causal inference from real world data on the average treatment effect in case of a binary outcome and discrete covariates. The proposed method ensures maximum likelihood properties to the estimated propensity score, i.e. asymptotic efficiency, thus outperforming other available approach. Two point estimators via inverse probability weighting are then proposed, and their main distributional properties are derived for constructing confidence interval and for testing the hypotheses of absence of the treatment effect. Empirical evidence of the substantial improvements offered by the proposed methodology versus standard logistic modelling of propensity score is provided in simulation settings that mimic the characteristics of a real dataset of prostate cancer patients from Milan San Raffaele Hospital.
Object detection in aerial images is a fundamental research topic in the geoscience and remote sensing domain. However, the advanced approaches on this topic mainly focus on designing the elaborate backbones or head networks but ignore neck networks. In this letter, we first underline the importance of the neck network in object detection from the perspective of information bottleneck. Then, to alleviate the information deficiency problem in the current approaches, we propose a global semantic network (GSNet), which acts as a bridge from the backbone network to the head network in a bidirectional global pattern. Compared to the existing approaches, our model can capture the rich and enhanced image features with less computational costs. Besides, we further propose a feature fusion refinement module (FRM) for different levels of features, which are suffering from the problem of semantic gap in feature fusion. To demonstrate the effectiveness and efficiency of our approach, experiments are carried out on two challenging and representative aerial image datasets (i.e., DOTA and HRSC2016). Experimental results in terms of accuracy and complexity validate the superiority of our method. The code has been open-sourced at GSNet.
Microsurgery is a particularly impactful yet challenging form of surgery. Robot assisted microsurgery has the potential to improve surgical dexterity and enable precise operation on such small scales in ways not previously possible. Intraocular microsurgery is a particularly challenging domain in part due to the lack of dexterity that is achievable with rigid instruments inserted through the eye. In this work, we present a new design for a millimeter-scale, dexterous wrist intended for microsurgery applications. The wrist is created via a state-of-the-art two-photon-polymerization (2PP) microfabrication technique, enabling the wrist to be constructed of flexible material with complex internal geometries and critical features at the micron-scale. The wrist features a square cross section with side length of 1.25 mm and total length of 3.75 mm. The wrist has three tendons routed down its length which, when actuated by small-scale linear actuators, enable bending in any plane. We present an integrated gripper actuated by a fourth tendon routed down the center of the robot. We evaluate the wrist and gripper by characterizing its bend-angle. We achieve more than 90 degrees bending in both axes. We demonstrate out of plane bending as well as the robot's ability to grip while actuated. Our integrated gripper/tendon-driven continuum robot design and meso-scale assembly techniques have the potential to enable small-scale wrists with more dexterity than has been previously demonstrated. Such a wrist could improve surgeon capabilities during teleoperation with the potential to improve patient outcomes in a variety of surgical applications, including intraocular surgery.
Deep learning has contributed greatly to many successes in artificial intelligence in recent years. Today, it is possible to train models that have thousands of layers and hundreds of billions of parameters. Large-scale deep models have achieved great success, but the enormous computational complexity and gigantic storage requirements make it extremely difficult to implement them in real-time applications. On the other hand, the size of the dataset is still a real problem in many domains. Data are often missing, too expensive, or impossible to obtain for other reasons. Ensemble learning is partially a solution to the problem of small datasets and overfitting. However, ensemble learning in its basic version is associated with a linear increase in computational complexity. We analyzed the impact of the ensemble decision-fusion mechanism and checked various methods of sharing the decisions including voting algorithms. We used the modified knowledge distillation framework as a decision-fusion mechanism which allows in addition compressing of the entire ensemble model into a weight space of a single model. We showed that knowledge distillation can aggregate knowledge from multiple teachers in only one student model and, with the same computational complexity, obtain a better-performing model compared to a model trained in the standard manner. We have developed our own method for mimicking the responses of all teachers at the same time, simultaneously. We tested these solutions on several benchmark datasets. In the end, we presented a wide application use of the efficient multi-teacher knowledge distillation framework. In the first example, we used knowledge distillation to develop models that could automate corrosion detection on aircraft fuselage. The second example describes detection of smoke on observation cameras in order to counteract wildfires in forests.
Embedding ethics modules within computer science courses has become a popular response to the growing recognition that CS programs need to better equip their students to navigate the ethical dimensions of computing technologies like AI, machine learning, and big data analytics. However, the popularity of this approach has outpaced the evidence of its positive outcomes. To help close that gap, this empirical study reports positive results from Northeastern's program that embeds values analysis modules into CS courses. The resulting data suggest that such modules have a positive effect on students' moral attitudes and that students leave the modules believing they are more prepared to navigate the ethical dimensions they will likely face in their eventual careers. Importantly, these gains were accomplished at an institution without a philosophy doctoral program, suggesting this strategy can be effectively employed by a wider range of institutions than many have thought.
A rapidly increasing amount of human conversation occurs online. But divisiveness and conflict can fester in text-based interactions on social media platforms, in messaging apps, and on other digital forums. Such toxicity increases polarization and, importantly, corrodes the capacity of diverse societies to develop efficient solutions to complex social problems that impact everyone. Scholars and civil society groups promote interventions that can make interpersonal conversations less divisive or more productive in offline settings, but scaling these efforts to the amount of discourse that occurs online is extremely challenging. We present results of a large-scale experiment that demonstrates how online conversations about divisive topics can be improved with artificial intelligence tools. Specifically, we employ a large language model to make real-time, evidence-based recommendations intended to improve participants' perception of feeling understood in conversations. We find that these interventions improve the reported quality of the conversation, reduce political divisiveness, and improve the tone, without systematically changing the content of the conversation or moving people's policy attitudes. These findings have important implications for future research on social media, political deliberation, and the growing community of scholars interested in the place of artificial intelligence within computational social science.
This article presents a novel telepresence system for advancing aerial manipulation in dynamic and unstructured environments. The proposed system not only features a haptic device, but also a virtual reality (VR) interface that provides real-time 3D displays of the robot's workspace as well as a haptic guidance to its remotely located operator. To realize this, multiple sensors namely a LiDAR, cameras and IMUs are utilized. For processing of the acquired sensory data, pose estimation pipelines are devised for industrial objects of both known and unknown geometries. We further propose an active learning pipeline in order to increase the sample efficiency of a pipeline component that relies on Deep Neural Networks (DNNs) based object detection. All these algorithms jointly address various challenges encountered during the execution of perception tasks in industrial scenarios. In the experiments, exhaustive ablation studies are provided to validate the proposed pipelines. Methodologically, these results commonly suggest how an awareness of the algorithms' own failures and uncertainty (`introspection') can be used tackle the encountered problems. Moreover, outdoor experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator (SAM). As a result, we show the viability of the proposed system in future industrial applications.
Aiming to improve the checkerboard corner detection robustness against the images with poor quality, such as lens distortion, extreme poses, and noise, we propose a novel detection algorithm which can maintain high accuracy on inputs under multiply scenarios without any prior knowledge of the checkerboard pattern. This whole algorithm includes a checkerboard corner detection network and some post-processing techniques. The network model is a fully convolutional network with improvements of loss function and learning rate, which can deal with the images of arbitrary size and produce correspondingly-sized output with a corner score on each pixel by efficient inference and learning. Besides, in order to remove the false positives, we employ three post-processing techniques including threshold related to maximum response, non-maximum suppression, and clustering. Evaluations on two different datasets show its superior robustness, accuracy and wide applicability in quantitative comparisons with the state-of-the-art methods, like MATE, ChESS, ROCHADE and OCamCalib.
Binary Neural Networks (BNNs) are increasingly preferred over full-precision Convolutional Neural Networks(CNNs) to reduce the memory and computational requirements of inference processing with minimal accuracy drop. BNNs convert CNN model parameters to 1-bit precision, allowing inference of BNNs to be processed with simple XNOR and bitcount operations. This makes BNNs amenable to hardware acceleration. Several photonic integrated circuits (PICs) based BNN accelerators have been proposed. Although these accelerators provide remarkably higher throughput and energy efficiency than their electronic counterparts, the utilized XNOR and bitcount circuits in these accelerators need to be further enhanced to improve their area, energy efficiency, and throughput. This paper aims to fulfill this need. For that, we invent a single-MRR-based optical XNOR gate (OXG). Moreover, we present a novel design of bitcount circuit which we refer to as Photo-Charge Accumulator (PCA). We employ multiple OXGs in a cascaded manner using dense wavelength division multiplexing (DWDM) and connect them to the PCA, to forge a novel Optical XNOR-Bitcount based Binary Neural Network Accelerator (OXBNN). Our evaluation for the inference of four modern BNNs indicates that OXBNN provides improvements of up to 62x and 7.6x in frames-per-second (FPS) and FPS/W (energy efficiency), respectively, on geometric mean over two PIC-based BNN accelerators from prior work. We developed a transaction-level, event-driven python-based simulator for evaluation of accelerators (//github.com/uky-UCAT/B_ONN_SIM).
Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.