This paper investigates the ultra reliable and low latency communication (URLLC) performance of the IRS-aided MIMO system. The upper and lower bounds of the optimal average error probability (OAEP) for the coding rate within 1/sqrt(Mn) of the capacity are derived, where n and M represent the blocklength and the number of transmit antennas, respectively. To achieve this goal, a new central limit theorem (CLT) for the mutual information density over the IRS-aided MIMO system is derived in the asymptotic regime where the block-length, the IRS size, and number of the antennas go to infinity with the same pace. The CLT is then utilized to derive the closed-form upper and lower bounds for the OAEP. Based on the analysis result, a gradient-based algorithm is proposed to minimize the lower bound of the OAEP by optimizing the phase shift of the IRS. Simulation results validate the fitness of the CLT and the effectiveness of the proposed algorithm in optimizing the theoretical bound, as well as the performance of practical LDPC code.
This paper investigates how large language models (LLMs) can enhance recommender systems, with a specific focus on Conversational Recommender Systems that leverage user preferences and personalised candidate selections from existing ranking models. We introduce VideolandGPT, a recommender system for a Video-on-Demand (VOD) platform, Videoland, which uses ChatGPT to select from a predetermined set of contents, considering the additional context indicated by users' interactions with a chat interface. We evaluate ranking metrics, user experience, and fairness of recommendations, comparing a personalised and a non-personalised version of the system, in a between-subject user study. Our results indicate that the personalised version outperforms the non-personalised in terms of accuracy and general user satisfaction, while both versions increase the visibility of items which are not in the top of the recommendation lists. However, both versions present inconsistent behavior in terms of fairness, as the system may generate recommendations which are not available on Videoland.
This paper proposes a novel approach for detecting objects using mobile robots in the context of the RoboCup Standard Platform League, with a primary focus on detecting the ball. The challenge lies in detecting a dynamic object in varying lighting conditions and blurred images caused by fast movements. To address this challenge, the paper presents a convolutional neural network architecture designed specifically for computationally constrained robotic platforms. The proposed CNN is trained to achieve high precision classification of single objects in image patches and to determine their precise spatial positions. The paper further integrates Early Exits into the existing high-precision CNN architecture to reduce the computational cost of easily rejectable cases in the background class. The training process involves a composite loss function based on confidence and positional losses with dynamic weighting and data augmentation. The proposed approach achieves a precision of 100% on the validation dataset and a recall of almost 87%, while maintaining an execution time of around 170 $\mu$s per hypotheses. By combining the proposed approach with an Early Exit, a runtime optimization of more than 28%, on average, can be achieved compared to the original CNN. Overall, this paper provides an efficient solution for an enhanced detection of objects, especially the ball, in computationally constrained robotic platforms.
This paper aims to survey various techniques utilized for content moderation in end-to-end encryption systems. We assess the challenging aspect of content moderation: maintaining a safe platform while assuring user privacy. We study the unique features of some content moderation techniques, such as message franking and perceptual hashing, and highlight their limitations. Currently implemented content moderation techniques violate the goals of end-to-end encrypted messaging to some extent. This has led researchers to develop remediations and design new security primitives to make content moderation compatible with end-to-end encryption systems. We detail these developments, analyze the proposed research efforts, assess their security guarantees, correlate them with other proposed solutions, and determine suitable improvements under specific scenarios.
The paper introduces the application of information geometry to describe the ground states of Ising models by utilizing parity-check matrices of cyclic and quasi-cyclic codes on toric and spherical topologies. The approach establishes a connection between machine learning and error-correcting coding. This proposed approach has implications for the development of new embedding methods based on trapping sets. Statistical physics and number geometry applied for optimize error-correcting codes, leading to these embedding and sparse factorization methods. The paper establishes a direct connection between DNN architecture and error-correcting coding by demonstrating how state-of-the-art architectures (ChordMixer, Mega, Mega-chunk, CDIL, ...) from the long-range arena can be equivalent to of block and convolutional LDPC codes (Cage-graph, Repeat Accumulate). QC codes correspond to certain types of chemical elements, with the carbon element being represented by the mixed automorphism Shu-Lin-Fossorier QC-LDPC code. The connections between Belief Propagation and the Permanent, Bethe-Permanent, Nishimori Temperature, and Bethe-Hessian Matrix are elaborated upon in detail. The Quantum Approximate Optimization Algorithm (QAOA) used in the Sherrington-Kirkpatrick Ising model can be seen as analogous to the back-propagation loss function landscape in training DNNs. This similarity creates a comparable problem with TS pseudo-codeword, resembling the belief propagation method. Additionally, the layer depth in QAOA correlates to the number of decoding belief propagation iterations in the Wiberg decoding tree. Overall, this work has the potential to advance multiple fields, from Information Theory, DNN architecture design (sparse and structured prior graph topology), efficient hardware design for Quantum and Classical DPU/TPU (graph, quantize and shift register architect.) to Materials Science and beyond.
This paper presents Deep Networks for Improved Segmentation Edges (DeNISE), a novel data enhancement technique using edge detection and segmentation models to improve the boundary quality of segmentation masks. DeNISE utilizes the inherent differences in two sequential deep neural architectures to improve the accuracy of the predicted segmentation edge. DeNISE applies to all types of neural networks and is not trained end-to-end, allowing rapid experiments to discover which models complement each other. We test and apply DeNISE for building segmentation in aerial images. Aerial images are known for difficult conditions as they have a low resolution with optical noise, such as reflections, shadows, and visual obstructions. Overall the paper demonstrates the potential for DeNISE. Using the technique, we improve the baseline results with a building IoU of 78.9%.
This position paper summarizes our published review on individual and multistakeholder fairness in Tourism Recommender Systems (TRS). Recently, there has been growing attention to fairness considerations in recommender systems (RS). It has been acknowledged in research that fairness in RS is often closely tied to the presence of multiple stakeholders, such as end users, item providers, and platforms, as it raises concerns for the fair treatment of all parties involved. Hence, fairness in RS is a multi-faceted concept that requires consideration of the perspectives and needs of the different stakeholders to ensure fair outcomes for them. However, there may often be instances where achieving the goals of one stakeholder could conflict with those of another, resulting in trade-offs. In this paper, we emphasized addressing the unique challenges of ensuring fairness in RS within the tourism domain. We aimed to discuss potential strategies for mitigating the aforementioned challenges and examine the applicability of solutions from other domains to tackle fairness issues in tourism. By exploring cross-domain approaches and strategies for incorporating S-Fairness, we can uncover valuable insights and determine how these solutions can be adapted and implemented effectively in the context of tourism to enhance fairness in RS.
This paper describes gaps in acquisition of drone imagery that impair the use with computer vision/machine learning (CV/ML) models and makes five recommendations to maximize image suitability for CV/ML post-processing. It describes a notional work process for the use of drones in wilderness search and rescue incidents. The large volume of data from the wide area search phase offers the greatest opportunity for CV/ML techniques because of the large number of images that would otherwise have to be manually inspected. The 2023 Wu-Murad search in Japan, one of the largest missing person searches conducted in that area, serves as a case study. Although drone teams conducting wide area searches may not know in advance if the data they collect is going to be used for CV/ML post-processing, there are data collection procedures that can improve the search in general with automated collection software. If the drone teams do expect to use CV/ML, then they can exploit knowledge about the model to further optimize flights.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.