亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present IndoorSim-to-OutdoorReal (I2O), an end-to-end learned visual navigation approach, trained solely in simulated short-range indoor environments, and demonstrates zero-shot sim-to-real transfer to the outdoors for long-range navigation on the Spot robot. Our method uses zero real-world experience (indoor or outdoor), and requires the simulator to model no predominantly-outdoor phenomenon (sloped grounds, sidewalks, etc). The key to I2O transfer is in providing the robot with additional context of the environment (i.e., a satellite map, a rough sketch of a map by a human, etc.) to guide the robot's navigation in the real-world. The provided context-maps do not need to be accurate or complete -- real-world obstacles (e.g., trees, bushes, pedestrians, etc.) are not drawn on the map, and openings are not aligned with where they are in the real-world. Crucially, these inaccurate context-maps provide a hint to the robot about a route to take to the goal. We find that our method that leverages Context-Maps is able to successfully navigate hundreds of meters in novel environments, avoiding novel obstacles on its path, to a distant goal without a single collision or human intervention. In comparison, policies without the additional context fail completely. Lastly, we test the robustness of the Context-Map policy by adding varying degrees of noise to the map in simulation. We find that the Context-Map policy is surprisingly robust to noise in the provided context-map. In the presence of significantly inaccurate maps (corrupted with 50% noise, or entirely blank maps), the policy gracefully regresses to the behavior of a policy with no context. Videos are available at //www.joannetruong.com/projects/i2o.html

相關內容

Social interaction is a fundamental aspect of human behavior and communication. The way individuals position themselves in relation to others, also known as proxemics, conveys social cues and affects the dynamics of social interaction. We present a novel approach that learns a 3D proxemics prior of two people in close social interaction. Since collecting a large 3D dataset of interacting people is a challenge, we rely on 2D image collections where social interactions are abundant. We achieve this by reconstructing pseudo-ground truth 3D meshes of interacting people from images with an optimization approach using existing ground-truth contact maps. We then model the proxemics using a novel denoising diffusion model called BUDDI that learns the joint distribution of two people in close social interaction directly in the SMPL-X parameter space. Sampling from our generative proxemics model produces realistic 3D human interactions, which we validate through a user study. Additionally, we introduce a new optimization method that uses the diffusion prior to reconstruct two people in close proximity from a single image without any contact annotation. Our approach recovers more accurate and plausible 3D social interactions from noisy initial estimates and outperforms state-of-the-art methods. See our project site for code, data, and model: muelea.github.io/buddi.

This paper presents a fully decentralized approach for realtime non-cooperative multi-robot navigation in social mini-games, such as navigating through a narrow doorway or negotiating right of way at a corridor intersection. Our contribution is a new realtime bi-level optimization algorithm, in which the top-level optimization consists of computing a fair and collision-free ordering followed by the bottom-level optimization which plans optimal trajectories conditioned on the ordering. We show that, given such a priority order, we can impose simple kinodynamic constraints on each robot that are sufficient for it to plan collision-free trajectories with minimal deviation from their preferred velocities, similar to how humans navigate in these scenarios. We successfully deploy the proposed algorithm in the real world using F$1/10$ robots, a Clearpath Jackal, and a Boston Dynamics Spot as well as in simulation using the SocialGym 2.0 multi-agent social navigation simulator, in the doorway and corridor intersection scenarios. We compare with state-of-the-art social navigation methods using multi-agent reinforcement learning, collision avoidance algorithms, and crowd simulation models. We show that $(i)$ classical navigation performs $44\%$ better than the state-of-the-art learning-based social navigation algorithms, $(ii)$ without a scheduling protocol, our approach results in collisions in social mini-games $(iii)$ our approach yields $2\times$ and $5\times$ fewer velocity changes than CADRL in doorways and intersections, and finally $(iv)$ bi-level navigation in doorways at a flow rate of $2.8 - 3.3$ (ms)$^{-1}$ is comparable to flow rate in human navigation at a flow rate of $4$ (ms)$^{-1}$.

In the context of neuroevolution, Quality-Diversity algorithms have proven effective in generating repertoires of diverse and efficient policies by relying on the definition of a behavior space. A natural goal induced by the creation of such a repertoire is trying to achieve behaviors on demand, which can be done by running the corresponding policy from the repertoire. However, in uncertain environments, two problems arise. First, policies can lack robustness and repeatability, meaning that multiple episodes under slightly different conditions often result in very different behaviors. Second, due to the discrete nature of the repertoire, solutions vary discontinuously. Here we present a new approach to achieve behavior-conditioned trajectory generation based on two mechanisms: First, MAP-Elites Low-Spread (ME-LS), which constrains the selection of solutions to those that are the most consistent in the behavior space. Second, the Quality-Diversity Transformer (QDT), a Transformer-based model conditioned on continuous behavior descriptors, which trains on a dataset generated by policies from a ME-LS repertoire and learns to autoregressively generate sequences of actions that achieve target behaviors. Results show that ME-LS produces consistent and robust policies, and that its combination with the QDT yields a single policy capable of achieving diverse behaviors on demand with high accuracy.

We study social learning dynamics where the agents collectively follow a simple multi-armed bandit protocol. Agents arrive sequentially, choose arms and receive associated rewards. Each agent observes the full history (arms and rewards) of the previous agents, and there are no private signals. While collectively the agents face exploration-exploitation tradeoff, each agent acts myopically, without regards to exploration. Motivating scenarios concern reviews and ratings on online platforms. We allow a wide range of myopic behaviors that are consistent with (parameterized) confidence intervals, including the "unbiased" behavior as well as various behaviorial biases. While extreme versions of these behaviors correspond to well-known bandit algorithms, we prove that more moderate versions lead to stark exploration failures, and consequently to regret rates that are linear in the number of agents. We provide matching upper bounds on regret by analyzing "moderately optimistic" agents. As a special case of independent interest, we obtain a general result on failure of the greedy algorithm in multi-armed bandits. This is the first such result in the literature, to the best of our knowledge.

In several practical applications of federated learning (FL), the clients are highly heterogeneous in terms of both their data and compute resources, and therefore enforcing the same model architecture for each client is very limiting. Moreover, the need for uncertainty quantification and data privacy constraints are often particularly amplified for clients that have limited local data. This paper presents a unified FL framework to simultaneously address all these constraints and concerns, based on training customized local Bayesian models that learn well even in the absence of large local datasets. A Bayesian framework provides a natural way of incorporating supervision in the form of prior distributions. We use priors in the functional (output) space of the networks to facilitate collaboration across heterogeneous clients. Moreover, formal differential privacy guarantees are provided for this framework. Experiments on standard FL datasets demonstrate that our approach outperforms strong baselines in both homogeneous and heterogeneous settings and under strict privacy constraints, while also providing characterizations of model uncertainties.

The accurate estimation of six degrees-of-freedom (6DoF) object poses is essential for many applications in robotics and augmented reality. However, existing methods for 6DoF pose estimation often depend on CAD templates or dense support views, restricting their usefulness in realworld situations. In this study, we present a new cascade framework named Cas6D for few-shot 6DoF pose estimation that is generalizable and uses only RGB images. To address the false positives of target object detection in the extreme few-shot setting, our framework utilizes a selfsupervised pre-trained ViT to learn robust feature representations. Then, we initialize the nearest top-K pose candidates based on similarity score and refine the initial poses using feature pyramids to formulate and update the cascade warped feature volume, which encodes context at increasingly finer scales. By discretizing the pose search range using multiple pose bins and progressively narrowing the pose search range in each stage using predictions from the previous stage, Cas6D can overcome the large gap between pose candidates and ground truth poses, which is a common failure mode in sparse-view scenarios. Experimental results on the LINEMOD and GenMOP datasets demonstrate that Cas6D outperforms state-of-the-art methods by 9.2% and 3.8% accuracy (Proj-5) under the 32-shot setting compared to OnePose++ and Gen6D.

BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司