Reconstructing the shape and spatially varying surface appearances of a physical-world object as well as its surrounding illumination based on 2D images (e.g., photographs) of the object has been a long-standing problem in computer vision and graphics. In this paper, we introduce an accurate and highly efficient object reconstruction pipeline combining neural based object reconstruction and physics-based inverse rendering (PBIR). Our pipeline firstly leverages a neural SDF based shape reconstruction to produce high-quality but potentially imperfect object shape. Then, we introduce a neural material and lighting distillation stage to achieve high-quality predictions for material and illumination. In the last stage, initialized by the neural predictions, we perform PBIR to refine the initial results and obtain the final high-quality reconstruction of object shape, material, and illumination. Experimental results demonstrate our pipeline significantly outperforms existing methods quality-wise and performance-wise.
While human speakers use a variety of different expressions when describing the same object in an image, giving rise to a distribution of plausible labels driven by pragmatic constraints, the extent to which current Vision \& Language Large Language Models (VLLMs) can mimic this crucial feature of language use is an open question. This applies to common, everyday objects, but it is particularly interesting for uncommon or novel objects for which a category label may be lacking or fuzzy. Furthermore, humans show clear production preferences for highly context-sensitive expressions, such as the quantifiers `few' or `most'. In our work, we evaluate VLLMs (FROMAGe, BLIP-2, LLaVA) on three categories (nouns, attributes, and quantifiers) where humans show great subjective variability concerning the distribution over plausible labels, using datasets and resources mostly under-explored in previous work. Our results reveal mixed evidence on the ability of VLLMs to capture human naming preferences, with all models failing in tasks that require high-level reasoning such as assigning quantifiers.
This work delves into the complexities of machine unlearning in the face of distributional shifts, particularly focusing on the challenges posed by non-uniform feature and label removal. With the advent of regulations like the GDPR emphasizing data privacy and the right to be forgotten, machine learning models face the daunting task of unlearning sensitive information without compromising their integrity or performance. Our research introduces a novel approach that leverages influence functions and principles of distributional independence to address these challenges. By proposing a comprehensive framework for machine unlearning, we aim to ensure privacy protection while maintaining model performance and adaptability across varying distributions. Our method not only facilitates efficient data removal but also dynamically adjusts the model to preserve its generalization capabilities. Through extensive experimentation, we demonstrate the efficacy of our approach in scenarios characterized by significant distributional shifts, making substantial contributions to the field of machine unlearning. This research paves the way for developing more resilient and adaptable unlearning techniques, ensuring models remain robust and accurate in the dynamic landscape of data privacy and machine learning.
Previous work has axiomatised the cardinality operation in relation algebras, which counts the number of edges of an unweighted graph. We generalise the cardinality axioms to Stone relation algebras, which model weighted graphs, and study the relationships between various axioms for cardinality. This results in simpler cardinality axioms also for relation algebras. We give sufficient conditions for the representability of Stone relation algebras and for Stone relation algebras to be relation algebras.
Modelling musical structure is vital yet challenging for artificial intelligence systems that generate symbolic music compositions. This literature review dissects the evolution of techniques for incorporating coherent structure, from symbolic approaches to foundational and transformative deep learning methods that harness the power of computation and data across a wide variety of training paradigms. In the later stages, we review an emerging technique which we refer to as "sub-task decomposition" that involves decomposing music generation into separate high-level structural planning and content creation stages. Such systems incorporate some form of musical knowledge or neuro-symbolic methods by extracting melodic skeletons or structural templates to guide the generation. Progress is evident in capturing motifs and repetitions across all three eras reviewed, yet modelling the nuanced development of themes across extended compositions in the style of human composers remains difficult. We outline several key future directions to realize the synergistic benefits of combining approaches from all eras examined.
In the applied algebraic topology community, the persistent homology induced by the Vietoris-Rips simplicial filtration is a standard method for capturing topological information from metric spaces. In this paper, we consider a different, more geometric way of generating persistent homology of metric spaces which arises by first embedding a given metric space into a larger space and then considering thickenings of the original space inside this ambient metric space. In the course of doing this, we construct an appropriate category for studying this notion of persistent homology and show that, in a category theoretic sense, the standard persistent homology of the Vietoris-Rips filtration is isomorphic to our geometric persistent homology provided that the ambient metric space satisfies a property called injectivity. As an application of this isomorphism result we are able to precisely characterize the type of intervals that appear in the persistence barcodes of the Vietoris-Rips filtration of any compact metric space and also to give succinct proofs of the characterization of the persistent homology of products and metric gluings of metric spaces. Our results also permit proving several bounds on the length of intervals in the Vietoris-Rips barcode by other metric invariants. Finally, as another application, we connect this geometric persistent homology to the notion of filling radius of manifolds introduced by Gromov \cite{G07} and show some consequences related to (1) the homotopy type of the Vietoris-Rips complexes of spheres which follow from work of M.~Katz and (2) characterization (rigidity) results for spheres in terms of their Vietoris-Rips persistence barcodes which follow from work of F.~Wilhelm.
Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Classical machine learning implicitly assumes that labels of the training data are sampled from a clean distribution, which can be too restrictive for real-world scenarios. However, statistical learning-based methods may not train deep learning models robustly with these noisy labels. Therefore, it is urgent to design Label-Noise Representation Learning (LNRL) methods for robustly training deep models with noisy labels. To fully understand LNRL, we conduct a survey study. We first clarify a formal definition for LNRL from the perspective of machine learning. Then, via the lens of learning theory and empirical study, we figure out why noisy labels affect deep models' performance. Based on the theoretical guidance, we categorize different LNRL methods into three directions. Under this unified taxonomy, we provide a thorough discussion of the pros and cons of different categories. More importantly, we summarize the essential components of robust LNRL, which can spark new directions. Lastly, we propose possible research directions within LNRL, such as new datasets, instance-dependent LNRL, and adversarial LNRL. Finally, we envision potential directions beyond LNRL, such as learning with feature-noise, preference-noise, domain-noise, similarity-noise, graph-noise, and demonstration-noise.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.