亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Linear thresholding models postulate that the conditional distribution of a response variable in terms of covariates differs on the two sides of a (typically unknown) hyperplane in the covariate space. A key goal in such models is to learn about this separating hyperplane. Exact likelihood or least squares methods to estimate the thresholding parameter involve an indicator function which make them difficult to optimize and are, therefore, often tackled by using a surrogate loss that uses a smooth approximation to the indicator. In this paper, we demonstrate that the resulting estimator is asymptotically normal with a near optimal rate of convergence: $n^{-1}$ up to a log factor, in both classification and regression thresholding models. This is substantially faster than the currently established convergence rates of smoothed estimators for similar models in the statistics and econometrics literatures. We also present a real-data application of our approach to an environmental data set where $CO_2$ emission is explained in terms of a separating hyperplane defined through per-capita GDP and urban agglomeration.

相關內容

The asymptotic behaviour of Linear Spectral Statistics (LSS) of the smoothed periodogram estimator of the spectral coherency matrix of a complex Gaussian high-dimensional time series $(\y_n)_{n \in \mathbb{Z}}$ with independent components is studied under the asymptotic regime where the sample size $N$ converges towards $+\infty$ while the dimension $M$ of $\y$ and the smoothing span of the estimator grow to infinity at the same rate in such a way that $\frac{M}{N} \rightarrow 0$. It is established that, at each frequency, the estimated spectral coherency matrix is close from the sample covariance matrix of an independent identically $\mathcal{N}_{\mathbb{C}}(0,\I_M)$ distributed sequence, and that its empirical eigenvalue distribution converges towards the Marcenko-Pastur distribution. This allows to conclude that each LSS has a deterministic behaviour that can be evaluated explicitly. Using concentration inequalities, it is shown that the order of magnitude of the supremum over the frequencies of the deviation of each LSS from its deterministic approximation is of the order of $\frac{1}{M} + \frac{\sqrt{M}}{N}+ (\frac{M}{N})^{3}$ where $N$ is the sample size. Numerical simulations supports our results.

Bayesian inference allows to obtain useful information on the parameters of models, either in computational statistics or more recently in the context of Bayesian Neural Networks. The computational cost of usual Monte Carlo methods for sampling a posteriori laws in Bayesian inference scales linearly with the number of data points. One option to reduce it to a fraction of this cost is to resort to mini-batching in conjunction with unadjusted discretizations of Langevin dynamics, in which case only a random fraction of the data is used to estimate the gradient. However, this leads to an additional noise in the dynamics and hence a bias on the invariant measure which is sampled by the Markov chain. We advocate using the so-called Adaptive Langevin dynamics, which is a modification of standard inertial Langevin dynamics with a dynamical friction which automatically corrects for the increased noise arising from mini-batching. We investigate the practical relevance of the assumptions underpinning Adaptive Langevin (constant covariance for the estimation of the gradient), which are not satisfied in typical models of Bayesian inference, and quantify the bias induced by minibatching in this case. We also show how to extend AdL in order to systematically reduce the bias on the posterior distribution by considering a dynamical friction depending on the current value of the parameter to sample.

Although neural networks are powerful function approximators, the underlying modelling assumptions ultimately define the likelihood and thus the hypothesis class they are parameterizing. In classification, these assumptions are minimal as the commonly employed softmax is capable of representing any categorical distribution. In regression, however, restrictive assumptions on the type of continuous distribution to be realized are typically placed, like the dominant choice of training via mean-squared error and its underlying Gaussianity assumption. Recently, modelling advances allow to be agnostic to the type of continuous distribution to be modelled, granting regression the flexibility of classification models. While past studies stress the benefit of such flexible regression models in terms of performance, here we study the effect of the model choice on uncertainty estimation. We highlight that under model misspecification, aleatoric uncertainty is not properly captured, and that a Bayesian treatment of a misspecified model leads to unreliable epistemic uncertainty estimates. Overall, our study provides an overview on how modelling choices in regression may influence uncertainty estimation and thus any downstream decision making process.

In sparse estimation, such as fused lasso and convex clustering, we apply either the proximal gradient method or the alternating direction method of multipliers (ADMM) to solve the problem. It takes time to include matrix division in the former case, while an efficient method such as FISTA (fast iterative shrinkage-thresholding algorithm) has been developed in the latter case. This paper proposes a general method for converting the ADMM solution to the proximal gradient method, assuming that assumption that the derivative of the objective function is Lipschitz continuous. Then, we apply it to sparse estimation problems, such as sparse convex clustering and trend filtering, and we show by numerical experiments that we can obtain a significant improvement in terms of efficiency.

We present a new model and methods for the posterior drift problem where the regression function in the target domain is modeled as a linear adjustment (on an appropriate scale) of that in the source domain, an idea that inherits the simplicity and the usefulness of generalized linear models and accelerated failure time models from the classical statistics literature, and study the theoretical properties of our proposed estimator in the binary classification problem. Our approach is shown to be flexible and applicable in a variety of statistical settings, and can be adopted to transfer learning problems in various domains including epidemiology, genetics and biomedicine. As a concrete application, we illustrate the power of our approach through mortality prediction for British Asians by borrowing strength from similar data from the larger pool of British Caucasians, using the UK Biobank data.

In this short note, we provide a sample complexity lower bound for learning linear predictors with respect to the squared loss. Our focus is on an agnostic setting, where no assumptions are made on the data distribution. This contrasts with standard results in the literature, which either make distributional assumptions, refer to specific parameter settings, or use other performance measures.

It is a common phenomenon that for high-dimensional and nonparametric statistical models, rate-optimal estimators balance squared bias and variance. Although this balancing is widely observed, little is known whether methods exist that could avoid the trade-off between bias and variance. We propose a general strategy to obtain lower bounds on the variance of any estimator with bias smaller than a prespecified bound. This shows to which extent the bias-variance trade-off is unavoidable and allows to quantify the loss of performance for methods that do not obey it. The approach is based on a number of abstract lower bounds for the variance involving the change of expectation with respect to different probability measures as well as information measures such as the Kullback-Leibler or chi-square-divergence. Some of these inequalities rely on a new concept of information matrices. In a second part of the article, the abstract lower bounds are applied to several statistical models including the Gaussian white noise model, a boundary estimation problem, the Gaussian sequence model and the high-dimensional linear regression model. For these specific statistical applications, different types of bias-variance trade-offs occur that vary considerably in their strength. For the trade-off between integrated squared bias and integrated variance in the Gaussian white noise model, we combine the general strategy for lower bounds with a reduction technique. This allows us to link the original problem to the bias-variance trade-off for estimators with additional symmetry properties in a simpler statistical model. In the Gaussian sequence model, different phase transitions of the bias-variance trade-off occur. Although there is a non-trivial interplay between bias and variance, the rate of the squared bias and the variance do not have to be balanced in order to achieve the minimax estimation rate.

Stochastic gradient descent (SGD) and its variants have established themselves as the go-to algorithms for large-scale machine learning problems with independent samples due to their generalization performance and intrinsic computational advantage. However, the fact that the stochastic gradient is a biased estimator of the full gradient with correlated samples has led to the lack of theoretical understanding of how SGD behaves under correlated settings and hindered its use in such cases. In this paper, we focus on hyperparameter estimation for the Gaussian process (GP) and take a step forward towards breaking the barrier by proving minibatch SGD converges to a critical point of the full log-likelihood loss function, and recovers model hyperparameters with rate $O(\frac{1}{K})$ for $K$ iterations, up to a statistical error term depending on the minibatch size. Our theoretical guarantees hold provided that the kernel functions exhibit exponential or polynomial eigendecay which is satisfied by a wide range of kernels commonly used in GPs. Numerical studies on both simulated and real datasets demonstrate that minibatch SGD has better generalization over state-of-the-art GP methods while reducing the computational burden and opening a new, previously unexplored, data size regime for GPs.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.

北京阿比特科技有限公司