This paper presents a new discretization error quantification method for the numerical integration of ordinary differential equations. The error is modelled by using the Wishart distribution, which enables us to capture the correlation between variables. Error quantification is achieved by solving an optimization problem under the order constraints for the covariance matrices. An algorithm for the optimization problem is also established in a slightly broader context.
Distinguishing two classes of candidate models is a fundamental and practically important problem in statistical inference. Error rate control is crucial to the logic but, in complex nonparametric settings, such guarantees can be difficult to achieve, especially when the stopping rule that determines the data collection process is not available. In this paper we develop a novel e-process construction that leverages the so-called predictive recursion (PR) algorithm designed to rapidly and recursively fit nonparametric mixture models. The resulting PRe-process affords anytime valid inference uniformly over stopping rules and is shown to be efficient in the sense that it achieves the maximal growth rate under the alternative relative to the mixture model being fit by PR. In the special case of testing for a log-concave density, the PRe-process test is computationally simpler and faster, more stable, and no less efficient compared to a recently proposed anytime valid test.
Branching process inspired models are widely used to estimate the effective reproduction number -- a useful summary statistic describing an infectious disease outbreak -- using counts of new cases. Case data is a real-time indicator of changes in the reproduction number, but is challenging to work with because cases fluctuate due to factors unrelated to the number of new infections. We develop a new model that incorporates the number of diagnostic tests as a surveillance model covariate. Using simulated data and data from the SARS-CoV-2 pandemic in California, we demonstrate that incorporating tests leads to improved performance over the state-of-the-art.
We propose a penalized least-squares method to fit the linear regression model with fitted values that are invariant to invertible linear transformations of the design matrix. This invariance is important, for example, when practitioners have categorical predictors and interactions. Our method has the same computational cost as ridge-penalized least squares, which lacks this invariance. We derive the expected squared distance between the vector of population fitted values and its shrinkage estimator as well as the tuning parameter value that minimizes this expectation. In addition to using cross validation, we construct two estimators of this optimal tuning parameter value and study their asymptotic properties. Our numerical experiments and data examples show that our method performs similarly to ridge-penalized least-squares.
I propose an alternative algorithm to compute the MMS voting rule. Instead of using linear programming, in this new algorithm the maximin support value of a committee is computed using a sequence of maximum flow problems.
We investigate a class of parametric elliptic semilinear partial differential equations of second order with homogeneous essential boundary conditions, where the coefficients and the right-hand side (and hence the solution) may depend on a parameter. This model can be seen as a reaction-diffusion problem with a polynomial nonlinearity in the reaction term. The efficiency of various numerical approximations across the entire parameter space is closely related to the regularity of the solution with respect to the parameter. We show that if the coefficients and the right-hand side are analytic or Gevrey class regular with respect to the parameter, the same type of parametric regularity is valid for the solution. The key ingredient of the proof is the combination of the alternative-to-factorial technique from our previous work [1] with a novel argument for the treatment of the power-type nonlinearity in the reaction term. As an application of this abstract result, we obtain rigorous convergence estimates for numerical integration of semilinear reaction-diffusion problems with random coefficients using Gaussian and Quasi-Monte Carlo quadrature. Our theoretical findings are confirmed in numerical experiments.
We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.
In this paper, we perform a roundoff error analysis of an integration-based method for computing the matrix sign function recently proposed by Nakaya and Tanaka. The method expresses the matrix sign function using an integral representation and computes the integral numerically by the double-exponential formula. While the method has large-grain parallelism and works well for well-conditioned matrices, its accuracy deteriorates when the input matrix is ill-conditioned or highly nonnormal. We investigate the reason for this phenomenon by a detailed roundoff error analysis.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
The nonlinear Poisson-Boltzmann equation (NPBE) is an elliptic partial differential equation used in applications such as protein interactions and biophysical chemistry (among many others). It describes the nonlinear electrostatic potential of charged bodies submerged in an ionic solution. The kinetic presence of the solvent molecules introduces randomness to the shape of a protein, and thus a more accurate model that incorporates these random perturbations of the domain is analyzed to compute the statistics of quantities of interest of the solution. When the parameterization of the random perturbations is high-dimensional, this calculation is intractable as it is subject to the curse of dimensionality. However, if the solution of the NPBE varies analytically with respect to the random parameters, the problem becomes amenable to techniques such as sparse grids and deep neural networks. In this paper, we show analyticity of the solution of the NPBE with respect to analytic perturbations of the domain by using the analytic implicit function theorem and the domain mapping method. Previous works have shown analyticity of solutions to linear elliptic equations but not for nonlinear problems. We further show how to derive \emph{a priori} bounds on the size of the region of analyticity. This method is applied to the trypsin molecule to demonstrate that the convergence rates of the quantity of interest are consistent with the analyticity result. Furthermore, the approach developed here is sufficiently general enough to be applied to other nonlinear problems in uncertainty quantification.
Minimization of cortical prediction errors is believed to be a key canonical computation of the cerebral cortex underlying perception, action and learning. However, it is still unclear how the cortex should form and use knowledge about uncertainty in this process of prediction error minimization. Here we derive neural dynamics minimizing prediction errors under the assumption that cortical areas must not only predict the activity in other areas and sensory streams, but also jointly estimate the precision of their predictions. This leads to a dynamic modulatory balancing of cortical streams based on context-dependent precision estimates. Moreover, the theory predicts the existence of second-order prediction errors, i.e. errors on precision estimates, computed and propagated through the cortical hierarchy alongside classical prediction errors. These second-order errors are used to learn weights of synapses responsible for precision estimation through an error-correcting synaptic learning rule. Finally, we propose a mapping of the theory to cortical circuitry.