亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Guessing Random Additive Noise Decoding (GRAND) is a universal decoding algorithm that has been recently proposed as a practical way to perform maximum likelihood decoding. It generates a sequence of possible error patterns and applies them to the received vector, checking if the result is a valid codeword. Ordered reliability bits GRAND (ORBGRAND) improves on GRAND by considering soft information received from the channel. Both GRAND and ORBGRAND have been implemented in hardware, focusing on average performance, sacrificing worst case throughput and latency. In this work, an improved pattern schedule for ORBGRAND is proposed. It provides $>0.5$dB gain over the standard schedule at a block error rate $\le 10^{-5}$, and outperforms more complex GRAND flavors with a fraction of the complexity. The proposed schedule is used within a novel code-agnositic decoder architecture: the decoder guarantees fixed high throughput and low latency, making it attractive for latency-constrained applications. It outperforms the worst-case performance of decoders by orders of magnitude, and outperforms many best-case figures. Decoding a code of length 128, it achieves a throughput of $79.21$Gb/s with $58.49$ns latency, and of $69.61$Gb/s with $40.58$ns latency, yielding better energy efficiency and comparable area efficiency with respect to the state of the art.

相關內容

Practical use of neural networks often involves requirements on latency, energy and memory among others. A popular approach to find networks under such requirements is through constrained Neural Architecture Search (NAS). However, previous methods use complicated predictors for the accuracy of the network. Those predictors are hard to interpret and sensitive to many hyperparameters to be tuned, hence, the resulting accuracy of the generated models is often harmed. In this work we resolve this by introducing Bilinear Interpretable Neural Architecture Search (BINAS), that is based on an accurate and simple bilinear formulation of both an accuracy estimator and the expected resource requirement, together with a scalable search method with theoretical guarantees. The simplicity of our proposed estimator together with the intuitive way it is constructed bring interpretability through many insights about the contribution of different design choices. For example, we find that in the examined search space, adding depth and width is more effective at deeper stages of the network and at the beginning of each resolution stage. Our experiments show that BINAS generates comparable to or better architectures than other state-of-the-art NAS methods within a reduced marginal search cost, while strictly satisfying the resource constraints.

In this paper, we prove a local limit theorem for the chi-square distribution with $r > 0$ degrees of freedom and noncentrality parameter $\lambda \geq 0$. We use it to develop refined normal approximations for the survival function. Our maximal errors go down to an order of $r^{-2}$, which is significantly smaller than the maximal error bounds of order $r^{-1/2}$ recently found by Horgan & Murphy (2013) and Seri (2015). Our results allow us to drastically reduce the number of observations required to obtain negligible errors in the energy detection problem, from $250$, as recommended in the seminal work of Urkowitz (1967), to only $8$ here with our new approximations. We also obtain an upper bound on several probability metrics between the central and noncentral chi-square distributions and the standard normal distribution, and we obtain an approximation for the median that improves the lower bound previously obtained by Robert (1990).

Escaping saddle points is a central research topic in nonconvex optimization. In this paper, we propose a simple gradient-based algorithm such that for a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$, it outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}(\log n/\epsilon^{1.75})$ iterations. Compared to the previous state-of-the-art algorithms by Jin et al. with $\tilde{O}((\log n)^{4}/\epsilon^{2})$ or $\tilde{O}((\log n)^{6}/\epsilon^{1.75})$ iterations, our algorithm is polynomially better in terms of $\log n$ and matches their complexities in terms of $1/\epsilon$. For the stochastic setting, our algorithm outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}((\log n)^{2}/\epsilon^{4})$ iterations. Technically, our main contribution is an idea of implementing a robust Hessian power method using only gradients, which can find negative curvature near saddle points and achieve the polynomial speedup in $\log n$ compared to the perturbed gradient descent methods. Finally, we also perform numerical experiments that support our results.

We investigate how the final parameters found by stochastic gradient descent are influenced by over-parameterization. We generate families of models by increasing the number of channels in a base network, and then perform a large hyper-parameter search to study how the test error depends on learning rate, batch size, and network width. We find that the optimal SGD hyper-parameters are determined by a "normalized noise scale," which is a function of the batch size, learning rate, and initialization conditions. In the absence of batch normalization, the optimal normalized noise scale is directly proportional to width. Wider networks, with their higher optimal noise scale, also achieve higher test accuracy. These observations hold for MLPs, ConvNets, and ResNets, and for two different parameterization schemes ("Standard" and "NTK"). We observe a similar trend with batch normalization for ResNets. Surprisingly, since the largest stable learning rate is bounded, the largest batch size consistent with the optimal normalized noise scale decreases as the width increases.

We study the problem of training deep neural networks with Rectified Linear Unit (ReLU) activiation function using gradient descent and stochastic gradient descent. In particular, we study the binary classification problem and show that for a broad family of loss functions, with proper random weight initialization, both gradient descent and stochastic gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under mild assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by (stochastic) gradient descent produces a sequence of iterates that stay inside a small perturbation region centering around the initial weights, in which the empirical loss function of deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of (stochastic) gradient descent. Our theoretical results shed light on understanding the optimization of deep learning, and pave the way to study the optimization dynamics of training modern deep neural networks.

Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

In this short note, we present an extension of long short-term memory (LSTM) neural networks to using a depth gate to connect memory cells of adjacent layers. Doing so introduces a linear dependence between lower and upper layer recurrent units. Importantly, the linear dependence is gated through a gating function, which we call depth gate. This gate is a function of the lower layer memory cell, the input to and the past memory cell of this layer. We conducted experiments and verified that this new architecture of LSTMs was able to improve machine translation and language modeling performances.

北京阿比特科技有限公司