In this short note, we present an extension of long short-term memory (LSTM) neural networks to using a depth gate to connect memory cells of adjacent layers. Doing so introduces a linear dependence between lower and upper layer recurrent units. Importantly, the linear dependence is gated through a gating function, which we call depth gate. This gate is a function of the lower layer memory cell, the input to and the past memory cell of this layer. We conducted experiments and verified that this new architecture of LSTMs was able to improve machine translation and language modeling performances.
The LSTM network was proposed to overcome the difficulty in learning long-term dependence, and has made significant advancements in applications. With its success and drawbacks in mind, this paper raises the question - do RNN and LSTM have long memory? We answer it partially by proving that RNN and LSTM do not have long memory from a statistical perspective. A new definition for long memory networks is further introduced, and it requires the model weights to decay at a polynomial rate. To verify our theory, we convert RNN and LSTM into long memory networks by making a minimal modification, and their superiority is illustrated in modeling long-term dependence of various datasets.
Long Short-Term Memory (LSTM) infers the long term dependency through a cell state maintained by the input and the forget gate structures, which models a gate output as a value in [0,1] through a sigmoid function. However, due to the graduality of the sigmoid function, the sigmoid gate is not flexible in representing multi-modality or skewness. Besides, the previous models lack modeling on the correlation between the gates, which would be a new method to adopt inductive bias for a relationship between previous and current input. This paper proposes a new gate structure with the bivariate Beta distribution. The proposed gate structure enables probabilistic modeling on the gates within the LSTM cell so that the modelers can customize the cell state flow with priors and distributions. Moreover, we theoretically show the higher upper bound of the gradient compared to the sigmoid function, and we empirically observed that the bivariate Beta distribution gate structure provides higher gradient values in training. We demonstrate the effectiveness of bivariate Beta gate structure on the sentence classification, image classification, polyphonic music modeling, and image caption generation.
Skeleton-based action recognition is an important task that requires the adequate understanding of movement characteristics of a human action from the given skeleton sequence. Recent studies have shown that exploring spatial and temporal features of the skeleton sequence is vital for this task. Nevertheless, how to effectively extract discriminative spatial and temporal features is still a challenging problem. In this paper, we propose a novel Attention Enhanced Graph Convolutional LSTM Network (AGC-LSTM) for human action recognition from skeleton data. The proposed AGC-LSTM can not only capture discriminative features in spatial configuration and temporal dynamics but also explore the co-occurrence relationship between spatial and temporal domains. We also present a temporal hierarchical architecture to increases temporal receptive fields of the top AGC-LSTM layer, which boosts the ability to learn the high-level semantic representation and significantly reduces the computation cost. Furthermore, to select discriminative spatial information, the attention mechanism is employed to enhance information of key joints in each AGC-LSTM layer. Experimental results on two datasets are provided: NTU RGB+D dataset and Northwestern-UCLA dataset. The comparison results demonstrate the effectiveness of our approach and show that our approach outperforms the state-of-the-art methods on both datasets.
Neural machine translation (NMT) systems are usually trained on a large amount of bilingual sentence pairs and translate one sentence at a time, ignoring inter-sentence information. This may make the translation of a sentence ambiguous or even inconsistent with the translations of neighboring sentences. In order to handle this issue, we propose an inter-sentence gate model that uses the same encoder to encode two adjacent sentences and controls the amount of information flowing from the preceding sentence to the translation of the current sentence with an inter-sentence gate. In this way, our proposed model can capture the connection between sentences and fuse recency from neighboring sentences into neural machine translation. On several NIST Chinese-English translation tasks, our experiments demonstrate that the proposed inter-sentence gate model achieves substantial improvements over the baseline.
Despite the effectiveness of recurrent neural network language models, their maximum likelihood estimation suffers from two limitations. It treats all sentences that do not match the ground truth as equally poor, ignoring the structure of the output space. Second, it suffers from "exposure bias": during training tokens are predicted given ground-truth sequences, while at test time prediction is conditioned on generated output sequences. To overcome these limitations we build upon the recent reward augmented maximum likelihood approach \ie sequence-level smoothing that encourages the model to predict sentences close to the ground truth according to a given performance metric. We extend this approach to token-level loss smoothing, and propose improvements to the sequence-level smoothing approach. Our experiments on two different tasks, image captioning and machine translation, show that token-level and sequence-level loss smoothing are complementary, and significantly improve results.
We present a set of experiments to demonstrate that deep recurrent neural networks (RNNs) learn internal representations that capture soft hierarchical notions of syntax from highly varied supervision. We consider four syntax tasks at different depths of the parse tree; for each word, we predict its part of speech as well as the first (parent), second (grandparent) and third level (great-grandparent) constituent labels that appear above it. These predictions are made from representations produced at different depths in networks that are pretrained with one of four objectives: dependency parsing, semantic role labeling, machine translation, or language modeling. In every case, we find a correspondence between network depth and syntactic depth, suggesting that a soft syntactic hierarchy emerges. This effect is robust across all conditions, indicating that the models encode significant amounts of syntax even in the absence of an explicit syntactic training supervision.
Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden states, cell states and outputs. Independently reducing the sizes of basic structures can result in inconsistent dimensions among them, and consequently, end up with invalid LSTM units. To overcome the problem, we propose Intrinsic Sparse Structures (ISS) in LSTMs. Removing a component of ISS will simultaneously decrease the sizes of all basic structures by one and thereby always maintain the dimension consistency. By learning ISS within LSTM units, the obtained LSTMs remain regular while having much smaller basic structures. Based on group Lasso regularization, our method achieves 10.59x speedup without losing any perplexity of a language modeling of Penn TreeBank dataset. It is also successfully evaluated through a compact model with only 2.69M weights for machine Question Answering of SQuAD dataset. Our approach is successfully extended to non- LSTM RNNs, like Recurrent Highway Networks (RHNs). Our source code is publicly available at //github.com/wenwei202/iss-rnns
We propose SEARNN, a novel training algorithm for recurrent neural networks (RNNs) inspired by the "learning to search" (L2S) approach to structured prediction. RNNs have been widely successful in structured prediction applications such as machine translation or parsing, and are commonly trained using maximum likelihood estimation (MLE). Unfortunately, this training loss is not always an appropriate surrogate for the test error: by only maximizing the ground truth probability, it fails to exploit the wealth of information offered by structured losses. Further, it introduces discrepancies between training and predicting (such as exposure bias) that may hurt test performance. Instead, SEARNN leverages test-alike search space exploration to introduce global-local losses that are closer to the test error. We first demonstrate improved performance over MLE on two different tasks: OCR and spelling correction. Then, we propose a subsampling strategy to enable SEARNN to scale to large vocabulary sizes. This allows us to validate the benefits of our approach on a machine translation task.
The pre-dominant approach to language modeling to date is based on recurrent neural networks. Their success on this task is often linked to their ability to capture unbounded context. In this paper we develop a finite context approach through stacked convolutions, which can be more efficient since they allow parallelization over sequential tokens. We propose a novel simplified gating mechanism that outperforms Oord et al (2016) and investigate the impact of key architectural decisions. The proposed approach achieves state-of-the-art on the WikiText-103 benchmark, even though it features long-term dependencies, as well as competitive results on the Google Billion Words benchmark. Our model reduces the latency to score a sentence by an order of magnitude compared to a recurrent baseline. To our knowledge, this is the first time a non-recurrent approach is competitive with strong recurrent models on these large scale language tasks.
The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU.