亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the dissipative spin-orbit problem in Celestial Mechanics, which describes the rotational motion of a triaxial satellite moving on a Keplerian orbit subject to tidal forcing and "drift". Our goal is to construct quasi-periodic solutions with fixed frequency, satisfying appropriate conditions. With the goal of applying rigorous KAM theory, we compute such quasi-periodic solution with very high precision. To this end, we have developed a very efficient algorithm. The first step is to compute very accurately the return map to a surface of section (using a high order Taylor's method with extended precision). Then, we find an invariant curve for the return map using recent algorithms that take advantage of the geometric features of the problem. This method is based on a rapidly convergent Newton's method which is guaranteed to converge if the initial error is small enough. So, it is very suitable for a continuation algorithm. The resulting algorithm is quite efficient. We only need to deal with a one dimensional function. If this function is discretized in $N$ points, the algorithm requires $O(N \log N) $ operations and $O(N) $ storage. The most costly step (the numerical integration of the equation along a turn) is trivial to parallelize. The main goal of the paper is to present the algorithms, implementation details and several sample results of runs. We also present both a rigorous and a numerical comparison of the results of averaged and not averaged models.

相關內容

We propose a new iterative scheme to compute the numerical solution to an over-determined boundary value problem for a general quasilinear elliptic PDE. The main idea is to repeatedly solve its linearization by using the quasi-reversibility method with a suitable Carleman weight function. The presence of the Carleman weight function allows us to employ a Carleman estimate to prove the convergence of the sequence generated by the iterative scheme above to the desired solution. The convergence of the iteration is fast at an exponential rate without the need of an initial good guess. We apply this method to compute solutions to some general quasilinear elliptic equations and a large class of first-order Hamilton-Jacobi equations. Numerical results are presented.

Quantum computing is a promising technology that harnesses the peculiarities of quantum mechanics to deliver computational speedups for some problems that are intractable to solve on a classical computer. Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in terms of chip size and error rates. Shallow quantum circuits with uncomplicated topologies are essential for successful applications in the NISQ era. Based on matrix analysis, we derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions. The depth of the compressed circuits is independent of simulation time and grows linearly with the number of spins. The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $\mathcal{O}(10^3)$ spins. The resulting quantum circuits have a simple nearest-neighbor topology, which makes them ideally suited for NISQ devices.

The numerical solution of dynamical systems with memory requires the efficient evaluation of Volterra integral operators in an evolutionary manner. After appropriate discretisation, the basic problem can be represented as a matrix-vector product with a lower diagonal but densely populated matrix. For typical applications, like fractional diffusion or large scale dynamical systems with delay, the memory cost for storing the matrix approximations and complete history of the data then would become prohibitive for an accurate numerical approximation. For Volterra-integral operators of convolution type, the \emph{fast and oblivious convolution quadrature} method of Sch\"adle, Lopez-Fernandez, and Lubich allows to compute the discretized valuation with $N$ time steps in $O(N \log N)$ complexity and only requiring $O(\log N)$ active memory to store a compressed version of the complete history of the data. We will show that this algorithm can be interpreted as an $\mathcal{H}$-matrix approximation of the underlying integral operator and, consequently, a further improvement can be achieved, in principle, by resorting to $\mathcal{H}^2$-matrix compression techniques. We formulate a variant of the $\mathcal{H}^2$-matrix vector product for discretized Volterra integral operators that can be performed in an evolutionary and oblivious manner and requires only $O(N)$ operations and $O(\log N)$ active memory. In addition to the acceleration, more general asymptotically smooth kernels can be treated and the algorithm does not require a-priori knowledge of the number of time steps. The efficiency of the proposed method is demonstrated by application to some typical test problems.

We study $k$-clustering problems with lower bounds, including $k$-median and $k$-means clustering with lower bounds. In addition to the point set $P$ and the number of centers $k$, a $k$-clustering problem with (uniform) lower bounds gets a number $B$. The solution space is restricted to clusterings where every cluster has at least $B$ points. We demonstrate how to approximate $k$-median with lower bounds via a reduction to facility location with lower bounds, for which $O(1)$-approximation algorithms are known. Then we propose a new constrained clustering problem with lower bounds where we allow points to be assigned multiple times (to different centers). This means that for every point, the clustering specifies a set of centers to which it is assigned. We call this clustering with weak lower bounds. We give a $(6.5+\epsilon)$-approximation for $k$-median clustering with weak lower bounds and an $O(1)$-approximation for $k$-means with weak lower bounds. We conclude by showing that at a constant increase in the approximation factor, we can restrict the number of assignments of every point to $2$ (or, if we allow fractional assignments, to $1+\epsilon$). This also leads to the first bicritera approximation algorithm for $k$-means with (standard) lower bounds where bicriteria is interpreted in the sense that the lower bounds are violated by a constant factor. All algorithms in this paper run in time that is polynomial in $n$ and $k$ (and $d$ for the Euclidean variants considered).

In this work we revisit the Boolean Hidden Matching communication problem, which was the first communication problem in the one-way model to demonstrate an exponential classical-quantum communication separation. In this problem, Alice's bits are matched into pairs according to a partition that Bob holds. These pairs are compressed using a Parity function and it is promised that the final bit-string is equal either to another bit-string Bob holds, or its complement. The problem is to decide which case is the correct one. Here we generalize the Boolean Hidden Matching problem by replacing the parity function with an arbitrary Boolean function $f$. Efficient communication protocols are presented depending on the sign-degree of $f$. If its sign-degree is less than or equal to 1, we show an efficient classical protocol. If its sign-degree is less than or equal to $2$, we show an efficient quantum protocol. We then completely characterize the classical hardness of all symmetric functions $f$ of sign-degree greater than or equal to $2$, except for one family of specific cases. We also prove, via Fourier analysis, a classical lower bound for any function $f$ whose pure high degree is greater than or equal to $2$. Similarly, we prove, also via Fourier analysis, a quantum lower bound for any function $f$ whose pure high degree is greater than or equal to $3$. These results give a large family of new exponential classical-quantum communication separations.

Channel knowledge map (CKM) is an emerging technique to enable environment-aware wireless communications, in which databases with location-specific channel knowledge are used to facilitate or even obviate real-time channel state information acquisition. One fundamental problem for CKM-enabled communication is how to efficiently construct the CKM based on finite measurement data points at limited user locations. Towards this end, this paper proposes a novel map construction method based on the \emph{expectation maximization} (EM) algorithm, by utilizing the available measurement data, jointly with the expert knowledge of well-established statistic channel models. The key idea is to partition the available data points into different groups, where each group shares the same modelling parameter values to be determined. We show that determining the modelling parameter values can be formulated as a maximum likelihood estimation problem with latent variables, which is then efficiently solved by the classic EM algorithm. Compared to the pure data-driven methods such as the nearest neighbor based interpolation, the proposed method is more efficient since only a small number of modelling parameters need to be determined and stored. Furthermore, the proposed method is extended for constructing a specific type of CKM, namely, the channel gain map (CGM), where closed-form expressions are derived for the E-step and M-step of the EM algorithm. Numerical results are provided to show the effectiveness of the proposed map construction method as compared to the benchmark curve fitting method with one single model.

This paper establishes the optimal approximation error characterization of deep rectified linear unit (ReLU) networks for smooth functions in terms of both width and depth simultaneously. To that end, we first prove that multivariate polynomials can be approximated by deep ReLU networks of width $\mathcal{O}(N)$ and depth $\mathcal{O}(L)$ with an approximation error $\mathcal{O}(N^{-L})$. Through local Taylor expansions and their deep ReLU network approximations, we show that deep ReLU networks of width $\mathcal{O}(N\ln N)$ and depth $\mathcal{O}(L\ln L)$ can approximate $f\in C^s([0,1]^d)$ with a nearly optimal approximation error $\mathcal{O}(\|f\|_{C^s([0,1]^d)}N^{-2s/d}L^{-2s/d})$. Our estimate is non-asymptotic in the sense that it is valid for arbitrary width and depth specified by $N\in\mathbb{N}^+$ and $L\in\mathbb{N}^+$, respectively.

The Quickest Transshipment Problem is to route flow as quickly as possible from sources with supplies to sinks with demands in a network with capacities and transit times on the arcs. It is of fundamental importance for numerous applications in areas such as logistics, production, traffic, evacuation, and finance. More than 25 years ago, Hoppe and Tardos presented the first (strongly) polynomial-time algorithm for this problem. Their approach, as well as subsequently derived algorithms with strongly polynomial running time, are hardly practical as they rely on parametric submodular function minimization via Megiddo's method of parametric search. The main contribution of this paper is a considerably faster algorithm for the Quickest Transshipment Problem that instead employs a subtle extension of the Discrete Newton Method. This improves the previously best known running time of $\tilde{O}(m^4k^{14})$ to $\tilde O(m^2k^5+m^3k^3+m^3n)$, where $n$ is the number of nodes, $m$ the number of arcs, and $k$ the number of sources and sinks.

We introduce the problem of finding a satisfying assignment to a CNF formula that must further belong to a prescribed input subspace. Equivalent formulations of the problem include finding a point outside a union of subspaces (the Union-of-Subspace Avoidance (USA) problem), and finding a common zero of a system of polynomials over $\F_2$ each of which is a product of affine forms. We focus on the case of k-CNF formulas (the k-SUB-SAT problem). Clearly, it is no easier than k-SAT, and might be harder. Indeed, via simple reductions we show NP-hardness for k=2 and W[1]-hardness parameterized by the co-dimension of the subspace. We also prove that the optimization version Max-2-SUB-SAT is NP-hard to approximate better than the trivial 3/4 ratio even on satisfiable instances. On the algorithmic front, we investigate fast exponential algorithms which give non-trivial savings over brute-force algorithms. We give a simple branching algorithm with runtime 1.5^r for 2-SUB-SAT, where $r$ is the subspace dimension and an O^*(1.4312)^n time algorithm where $n$ is the number of variables. For k more than 2, while known algorithms for solving a system of degree $k$ polynomial equations already imply a solution with runtime 2^{r(1-1/2k)}, we explore a more combinatorial approach. For instance, based on the notion of critical variables, we give an algorithm with running time ${n\choose {\le t}} 2^{n-n/k}$, where $n$ is the number of variables and $t$ is the co-dimension of the subspace. This improves upon the running time of the polynomial equations approach for small co-dimension. Our algorithm also achieves polynomial space in contrast to the algebraic approach that uses exponential space.

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.

北京阿比特科技有限公司