亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Increased reproducibility of machine learning research has been a driving force for dramatic improvements in learning performances. The scientific community further fosters this effort by including reproducibility ratings in reviewer forms and considering them as a crucial factor for the overall evaluation of papers. Accompanying source code is not sufficient to make a work reproducible. The shared codes should meet the ML reproducibility checklist as well. This work aims to support reproducibility evaluations of papers with source codes. We propose an end-to-end system that operates on the Readme file of the source code repositories. The system checks the compliance of a given Readme to a template proposed by a widely used platform for sharing source codes of research. Our system generates scores based on a custom function to combine section scores. We also train a hierarchical transformer model to assign a class label to a given Readme. The experimental results show that the section similarity-based system performs better than the hierarchical transformer. Moreover, it has an advantage regarding explainability since one can directly relate the score to the sections of Readme files.

相關內容

Objective: Despite the recent increase in research activity, deep-learning models have not yet been widely accepted in medicine. The shortage of high-quality annotated data often hinders the development of robust and generalizable models, which do not suffer from degraded effectiveness when presented with newly-collected, out-of-distribution (OOD) datasets. Methods: Contrastive Self-Supervised Learning (SSL) offers a potential solution to the scarcity of labeled data as it takes advantage of unlabeled data to increase model effectiveness and robustness. In this research, we propose applying contrastive SSL for detecting abnormalities in phonocardiogram (PCG) samples by learning a generalized representation of the signal. Specifically, we perform an extensive comparative evaluation of a wide range of audio-based augmentations and evaluate trained classifiers on multiple datasets across different downstream tasks. Results: We experimentally demonstrate that, depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32% when evaluated on unseen data, while SSL models only lose up to 10% or even improve in some cases. Conclusions: Contrastive SSL pretraining can assist in providing robust classifiers which can generalize to unseen, OOD data, without relying on time- and labor-intensive annotation processes by medical experts. Furthermore, the proposed extensive evaluation protocol sheds light on the most promising and appropriate augmentations for robust PCG signal processing. Significance: We provide researchers and practitioners with a roadmap towards producing robust models for PCG classification, in addition to an open-source codebase for developing novel approaches.

Supervised learning methods have shown effectiveness in estimating spatial acoustic parameters such as time difference of arrival, direct-to-reverberant ratio and reverberation time. However, they still suffer from the simulation-to-reality generalization problem due to the mismatch between simulated and real-world acoustic characteristics and the deficiency of annotated real-world data. To this end, this work proposes a self-supervised method that takes full advantage of unlabeled data for spatial acoustic parameter estimation. First, a new pretext task, i.e. cross-channel signal reconstruction (CCSR), is designed to learn a universal spatial acoustic representation from unlabeled multi-channel microphone signals. We mask partial signals of one channel and ask the model to reconstruct them, which makes it possible to learn spatial acoustic information from unmasked signals and extract source information from the other microphone channel. An encoder-decoder structure is used to disentangle the two kinds of information. By fine-tuning the pre-trained spatial encoder with a small annotated dataset, this encoder can be used to estimate spatial acoustic parameters. Second, a novel multi-channel audio Conformer (MC-Conformer) is adopted as the encoder model architecture, which is suitable for both the pretext and downstream tasks. It is carefully designed to be able to capture the local and global characteristics of spatial acoustics exhibited in the time-frequency domain. Experimental results of five acoustic parameter estimation tasks on both simulated and real-world data show the effectiveness of the proposed method. To the best of our knowledge, this is the first self-supervised learning method in the field of spatial acoustic representation learning and multi-channel audio signal processing.

Understanding the generalization abilities of modern machine learning algorithms has been a major research topic over the past decades. In recent years, the learning dynamics of Stochastic Gradient Descent (SGD) have been related to heavy-tailed dynamics. This has been successfully applied to generalization theory by exploiting the fractal properties of those dynamics. However, the derived bounds depend on mutual information (decoupling) terms that are beyond the reach of computability. In this work, we prove generalization bounds over the trajectory of a class of heavy-tailed dynamics, without those mutual information terms. Instead, we introduce a geometric decoupling term by comparing the learning dynamics (depending on the empirical risk) with an expected one (depending on the population risk). We further upper-bound this geometric term, by using techniques from the heavy-tailed and the fractal literature, making it fully computable. Moreover, as an attempt to tighten the bounds, we propose a PAC-Bayesian setting based on perturbed dynamics, in which the same geometric term plays a crucial role and can still be bounded using the techniques described above.

When deploying machine learning (ML) applications, the automated allocation of computing resources-commonly referred to as autoscaling-is crucial for maintaining a consistent inference time under fluctuating workloads. The objective is to maximize the Quality of Service metrics, emphasizing performance and availability, while minimizing resource costs. In this paper, we compare scalable deployment techniques across three levels of scaling: at the application level (TorchServe, RayServe) and the container level (K3s) in a local environment (production server), as well as at the container and machine levels in a cloud environment (Amazon Web Services Elastic Container Service and Elastic Kubernetes Service). The comparison is conducted through the study of mean and standard deviation of inference time in a multi-client scenario, along with upscaling response times. Based on this analysis, we propose a deployment strategy for both local and cloud-based environments.

Counterfactual explanations (CFE) are methods that explain a machine learning model by giving an alternate class prediction of a data point with some minimal changes in its features. It helps the users to identify their data attributes that caused an undesirable prediction like a loan or credit card rejection. We describe an efficient and an actionable counterfactual (CF) generation method based on particle swarm optimization (PSO). We propose a simple objective function for the optimization of the instance-centric CF generation problem. The PSO brings in a lot of flexibility in terms of carrying out multi-objective optimization in large dimensions, capability for multiple CF generation, and setting box constraints or immutability of data attributes. An algorithm is proposed that incorporates these features and it enables greater control over the proximity and sparsity properties over the generated CFs. The proposed algorithm is evaluated with a set of action-ability metrics in real-world datasets, and the results were superior compared to that of the state-of-the-arts.

Although robust statistical estimators are less affected by outlying observations, their computation is usually more challenging. This is particularly the case in high-dimensional sparse settings. The availability of new optimization procedures, mainly developed in the computer science domain, offers new possibilities for the field of robust statistics. This paper investigates how such procedures can be used for robust sparse association estimators. The problem can be split into a robust estimation step followed by an optimization for the remaining decoupled, (bi-)convex problem. A combination of the augmented Lagrangian algorithm and adaptive gradient descent is implemented to also include suitable constraints for inducing sparsity. We provide results concerning the precision of the algorithm and show the advantages over existing algorithms in this context. High-dimensional empirical examples underline the usefulness of this procedure. Extensions to other robust sparse estimators are possible.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司