We develop a method for solving elliptic partial differential equations on surfaces described by CAD patches that may have gaps/overlaps. The method is based on hybridization using a three-dimensional mesh that covers the gap/overlap between patches. Thus, the hybrid variable is defined on a three-dimensional mesh, and we need to add appropriate normal stabilization to obtain an accurate solution, which we show can be done by adding a suitable term to the weak form. In practical applications, the hybrid mesh may be conveniently constructed using an octree to efficiently compute the necessary geometric information. We prove error estimates and present several numerical examples illustrating the application of the method to different problems, including a realistic CAD model.
The well-posedness of a non-local advection-selection-mutation problem deriving from adaptive dynamics models is shown for a wide family of initial data. A particle method is then developed, in order to approximate the solution of such problem by a regularised sum of weighted Dirac masses whose characteristics solve a suitably defined ODE system. The convergence of the particle method over any finite interval is shown and an explicit rate of convergence is given. Furthermore, we investigate the asymptotic-preserving properties of the method in large times, providing sufficient conditions for it to hold true as well as examples and counter-examples. Finally, we illustrate the method in two cases taken from the literature.
Matrix functions play an increasingly important role in many areas of scientific computing and engineering disciplines. In such real-world applications, algorithms working in floating-point arithmetic are used for computing matrix functions and additionally, input data might be unreliable, e.g., due to measurement errors. Therefore, it is crucial to understand the sensitivity of matrix functions to perturbations, which is measured by condition numbers. However, the condition number itself might not be computed exactly as well due to round-off and errors in the input. The sensitivity of the condition number is measured by the so-called level-2 condition number. For the usual (level-1) condition number, it is well-known that structured condition numbers (i.e., where only perturbations are taken into account that preserve the structure of the input matrix) might be much smaller than unstructured ones, which, e.g., suggests that structure-preserving algorithms for matrix functions might yield much more accurate results than general-purpose algorithms. In this work, we examine structured level-2 condition numbers in the particular case of restricting the perturbation matrix to an automorphism group, a Lie or Jordan algebra or the space of quasi-triangular matrices. In numerical experiments, we then compare the unstructured level-2 condition number with the structured one for some specific matrix functions such as the matrix logarithm, matrix square root, and matrix exponential.
In this paper, we propose, analyze and implement efficient time parallel methods for the Cahn-Hilliard (CH) equation. It is of great importance to develop efficient numerical methods for the CH equation, given the range of applicability of the CH equation has. The CH equation generally needs to be simulated for a very long time to get the solution of phase coarsening stage. Therefore it is desirable to accelerate the computation using parallel method in time. We present linear and nonlinear Parareal methods for the CH equation depending on the choice of fine approximation. We illustrate our results by numerical experiments.
Quadrotors are agile flying robots that are challenging to control. Considering the full dynamics of quadrotors during motion planning is crucial to achieving good solution quality and small tracking errors during flight. Optimization-based methods scale well with high-dimensional state spaces and can handle dynamic constraints directly, therefore they are often used in these scenarios. The resulting optimization problem is notoriously difficult to solve due to its nonconvex constraints. In this work, we present an analysis of four solvers for nonlinear trajectory optimization (KOMO, direct collocation with SCvx, direct collocation with CasADi, Crocoddyl) and evaluate their performance in scenarios where the solvers are tasked to find minimum-effort solutions to geometrically complex problems and problems requiring highly dynamic solutions. Benchmarking these methods helps to determine the best algorithm structures for these kinds of problems.
The total correlation(TC) is a crucial index to measure the correlation between marginal distribution in multidimensional random variables, and it is frequently applied as an inductive bias in representation learning. Previous research has shown that the TC value can be estimated using mutual information boundaries through decomposition. However, we found through theoretical derivation and qualitative experiments that due to the use of importance sampling in the decomposition process, the bias of TC value estimated based on MI bounds will be amplified when the proposal distribution in the sampling differs significantly from the target distribution. To reduce estimation bias issues, we propose a TC estimation correction model based on supervised learning, which uses the training iteration loss sequence of the TC estimator based on MI bounds as input features to output the true TC value. Experiments show that our proposed method can improve the accuracy of TC estimation and eliminate the variance generated by the TC estimation process.
Quasi-periodic responses composed of multiple base frequencies widely exist in science and engineering problems. The multiple harmonic balance (MHB) method is one of the most commonly used approaches for such problems. However, it is limited by low-order estimations due to complex symbolic operations in practical uses. Many variants have been developed to improve the MHB method, among which the time domain MHB-like methods are regarded as crucial improvements because of their high efficiency and simple derivation. But there is still one main drawback remaining to be addressed. The time domain MHB-like methods negatively suffer from non-physical solutions, which have been shown to be caused by aliasing (mixtures of the high-order into the low-order harmonics). Inspired by the collocation-based harmonic balancing framework recently established by our group, we herein propose a reconstruction multiple harmonic balance (RMHB) method to reconstruct the conventional MHB method using discrete time domain collocations. Our study shows that the relation between the MHB and time domain MHB-like methods is determined by an aliasing matrix, which is non-zero when aliasing occurs. On this basis, a conditional equivalence is established to form the RMHB method. Three numerical examples demonstrate that this new method is more robust and efficient than the state-of-the-art methods.
Typical algorithms for point cloud registration such as Iterative Closest Point (ICP) require a favorable initial transform estimate between two point clouds in order to perform a successful registration. State-of-the-art methods for choosing this starting condition rely on stochastic sampling or global optimization techniques such as branch and bound. In this work, we present a new method based on Bayesian optimization for finding the critical initial ICP transform. We provide three different configurations for our method which highlights the versatility of the algorithm to both find rapid results and refine them in situations where more runtime is available such as offline map building. Experiments are run on popular data sets and we show that our approach outperforms state-of-the-art methods when given similar computation time. Furthermore, it is compatible with other improvements to ICP, as it focuses solely on the selection of an initial transform, a starting point for all ICP-based methods.
In online reinforcement learning (RL), instead of employing standard structural assumptions on Markov decision processes (MDPs), using a certain coverage condition (original from offline RL) is enough to ensure sample-efficient guarantees (Xie et al. 2023). In this work, we focus on this new direction by digging more possible and general coverage conditions, and study the potential and the utility of them in efficient online RL. We identify more concepts, including the $L^p$ variant of concentrability, the density ratio realizability, and trade-off on the partial/rest coverage condition, that can be also beneficial to sample-efficient online RL, achieving improved regret bound. Furthermore, if exploratory offline data are used, under our coverage conditions, both statistically and computationally efficient guarantees can be achieved for online RL. Besides, even though the MDP structure is given, e.g., linear MDP, we elucidate that, good coverage conditions are still beneficial to obtain faster regret bound beyond $\widetilde{O}(\sqrt{T})$ and even a logarithmic order regret. These results provide a good justification for the usage of general coverage conditions in efficient online RL.
Tensor contraction operations in computational chemistry consume significant fractions of computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. The TAMM framework decouples the specification of the computation and the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM whereas high-performance computing developers can focus on various optimizations on the underlying constructs such as efficient data distribution, optimized scheduling algorithms, efficient use of intra-node resources (e.g., GPUs). The modular structure of TAMM allows it to be extended to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to sustainable development of tensor contraction-based methods in computational chemistry applications. We present case studies that highlight the ease of use as well as the performance and productivity gains compared to other implementations.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.