亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A common method of generalizing binary to multi-class classification is the error correcting code (ECC). ECCs may be optimized in a number of ways, for instance by making them orthogonal. Here we test two types of orthogonal ECCs on seven different datasets using three types of binary classifier and compare them with three other multi-class methods: 1 vs. 1, one-versus-the-rest and random ECCs. The first type of orthogonal ECC, in which the codes contain no zeros, admits a fast and simple method of solving for the probabilities. Orthogonal ECCs are always more accurate than random ECCs as predicted by recent literature. Improvments in uncertainty coefficient (U.C.) range between 0.4--17.5% (0.004--0.139, absolute), while improvements in Brier score between 0.7--10.7%. Unfortunately, orthogonal ECCs are rarely more accurate than 1 vs. 1. Disparities are worst when the methods are paired with logistic regression, with orthogonal ECCs never beating 1 vs. 1. When the methods are paired with SVM, the losses are less significant, peaking at 1.5%, relative, 0.011 absolute in uncertainty coefficient and 6.5% in Brier scores. Orthogonal ECCs are always the fastest of the five multi-class methods when paired with linear classifiers. When paired with a piecewise linear classifier, whose classification speed does not depend on the number of training samples, classifications using orthogonal ECCs were always more accurate than the other methods and also faster than 1 vs. 1. Losses against 1 vs. 1 here were higher, peaking at 1.9% (0.017, absolute), in U.C. and 39% in Brier score. Gains in speed ranged between 1.1% and over 100%. Whether the speed increase is worth the penalty in accuracy will depend on the application.

相關內容

We investigate online classification with paid stochastic experts. Here, before making their prediction, each expert must be paid. The amount that we pay each expert directly influences the accuracy of their prediction through some unknown Lipschitz "productivity" function. In each round, the learner must decide how much to pay each expert and then make a prediction. They incur a cost equal to a weighted sum of the prediction error and upfront payments for all experts. We introduce an online learning algorithm whose total cost after $T$ rounds exceeds that of a predictor which knows the productivity of all experts in advance by at most $\mathcal{O}(K^2(\log T)\sqrt{T})$ where $K$ is the number of experts. In order to achieve this result, we combine Lipschitz bandits and online classification with surrogate losses. These tools allow us to improve upon the bound of order $T^{2/3}$ one would obtain in the standard Lipschitz bandit setting. Our algorithm is empirically evaluated on synthetic data

The Makespan Scheduling problem is an extensively studied NP-hard problem, and its simplest version looks for an allocation approach for a set of jobs with deterministic processing times to two identical machines such that the makespan is minimized. However, in real life scenarios, the actual processing time of each job may be stochastic around the expected value with a variance, under the influence of external factors, and the actual processing times of these jobs may be correlated with covariances. Thus within this paper, we propose a chance-constrained version of the Makespan Scheduling problem and investigate the theoretical performance of the classical Randomized Local Search and (1+1) EA for it. More specifically, we first study two variants of the Chance-constrained Makespan Scheduling problem and their computational complexities, then separately analyze the expected runtime of the two algorithms to obtain an optimal solution or almost optimal solution to the instances of the two variants. In addition, we investigate the experimental performance of the two algorithms for the two variants.

Profile likelihoods are rarely used in geostatistical models due to the computational burden imposed by repeated decompositions of large variance matrices. Accounting for uncertainty in covariance parameters can be highly consequential in geostatistical models as some covariance parameters are poorly identified, the problem is severe enough that the differentiability parameter of the Matern correlation function is typically treated as fixed. The problem is compounded with anisotropic spatial models as there are two additional parameters to consider. In this paper, we make the following contributions: 1, A methodology is created for profile likelihoods for Gaussian spatial models with Mat\'ern family of correlation functions, including anisotropic models. This methodology adopts a novel reparametrization for generation of representative points, and uses GPUs for parallel profile likelihoods computation in software implementation. 2, We show the profile likelihood of the Mat\'ern shape parameter is often quite flat but still identifiable, it can usually rule out very small values. 3, Simulation studies and applications on real data examples show that profile-based confidence intervals of covariance parameters and regression parameters have superior coverage to the traditional standard Wald type confidence intervals.

We investigate a general matrix factorization for deviance-based data losses, extending the ubiquitous singular value decomposition beyond squared error loss. While similar approaches have been explored before, our method leverages classical statistical methodology from generalized linear models (GLMs) and provides an efficient algorithm that is flexible enough to allow for structural zeros via entry weights. Moreover, by adapting results from GLM theory, we provide support for these decompositions by (i) showing strong consistency under the GLM setup, (ii) checking the adequacy of a chosen exponential family via a generalized Hosmer-Lemeshow test, and (iii) determining the rank of the decomposition via a maximum eigenvalue gap method. To further support our findings, we conduct simulation studies to assess robustness to decomposition assumptions and extensive case studies using benchmark datasets from image face recognition, natural language processing, network analysis, and biomedical studies. Our theoretical and empirical results indicate that the proposed decomposition is more flexible, general, and robust, and can thus provide improved performance when compared to similar methods. To facilitate applications, an R package with efficient model fitting and family and rank determination is also provided.

Black-box zero-th order optimization is a central primitive for applications in fields as diverse as finance, physics, and engineering. In a common formulation of this problem, a designer sequentially attempts candidate solutions, receiving noisy feedback on the value of each attempt from the system. In this paper, we study scenarios in which feedback is also provided on the safety of the attempted solution, and the optimizer is constrained to limit the number of unsafe solutions that are tried throughout the optimization process. Focusing on methods based on Bayesian optimization (BO), prior art has introduced an optimization scheme -- referred to as SAFEOPT -- that is guaranteed not to select any unsafe solution with a controllable probability over feedback noise as long as strict assumptions on the safety constraint function are met. In this paper, a novel BO-based approach is introduced that satisfies safety requirements irrespective of properties of the constraint function. This strong theoretical guarantee is obtained at the cost of allowing for an arbitrary, controllable but non-zero, rate of violation of the safety constraint. The proposed method, referred to as SAFE-BOCP, builds on online conformal prediction (CP) and is specialized to the cases in which feedback on the safety constraint is either noiseless or noisy. Experimental results on synthetic and real-world data validate the advantages and flexibility of the proposed SAFE-BOCP.

We study the online variant of the Min-Sum Set Cover (MSSC) problem, a generalization of the well-known list update problem. In the MSSC problem, an algorithm has to maintain the time-varying permutation of the list of $n$ elements, and serve a sequence of requests $R_1, R_2, \dots, R_t, \dots$. Each $R_t$ is a subset of elements of cardinality at most $r$. For a requested set $R_t$, an online algorithm has to pay the cost equal to the position of the first element from $R_t$ on its list. Then, it may arbitrarily permute its list, paying the number of swapped adjacent element pairs. We present the first constructive deterministic algorithm for this problem, whose competitive ratio does not depend on $n$. Our algorithm is $O(r^2)$-competitive, which beats both the existential upper bound of $O(r^4)$ by Bienkowski and Mucha [AAAI '23] and the previous constructive bound of $O(r^{3/2} \cdot \sqrt{n})$ by Fotakis et al. [ICALP '20]. Furthermore, we show that our algorithm attains an asymptotically optimal competitive ratio of $O(r)$ when compared to the best fixed permutation of elements.

Automated decision support systems promise to help human experts solve multiclass classification tasks more efficiently and accurately. However, existing systems typically require experts to understand when to cede agency to the system or when to exercise their own agency. Otherwise, the experts may be better off solving the classification tasks on their own. In this work, we develop an automated decision support system that, by design, does not require experts to understand when to trust the system to improve performance. Rather than providing (single) label predictions and letting experts decide when to trust these predictions, our system provides sets of label predictions constructed using conformal prediction$\unicode{x2014}$prediction sets$\unicode{x2014}$and forcefully asks experts to predict labels from these sets. By using conformal prediction, our system can precisely trade-off the probability that the true label is not in the prediction set, which determines how frequently our system will mislead the experts, and the size of the prediction set, which determines the difficulty of the classification task the experts need to solve using our system. In addition, we develop an efficient and near-optimal search method to find the conformal predictor under which the experts benefit the most from using our system. Simulation experiments using synthetic and real expert predictions demonstrate that our system may help experts make more accurate predictions and is robust to the accuracy of the classifier the conformal predictor relies on.

Univariate and multivariate normal probability distributions are widely used when modeling decisions under uncertainty. Computing the performance of such models requires integrating these distributions over specific domains, which can vary widely across models. Besides some special cases, there exist no general analytical expressions, standard numerical methods or software for these integrals. Here we present mathematical results and open-source software that provide (i) the probability in any domain of a normal in any dimensions with any parameters, (ii) the probability density, cumulative distribution, and inverse cumulative distribution of any function of a normal vector, (iii) the classification errors among any number of normal distributions, the Bayes-optimal discriminability index and relation to the operating characteristic, (iv) dimension reduction and visualizations for such problems, and (v) tests for how reliably these methods may be used on given data. We demonstrate these tools with vision research applications of detecting occluding objects in natural scenes, and detecting camouflage.

In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司