Stream processing has become a critical component in the architecture of modern applications. With the exponential growth of data generation from sources such as the Internet of Things, business intelligence, and telecommunications, real-time processing of unbounded data streams has become a necessity. DSP systems provide a solution to this challenge, offering high horizontal scalability, fault-tolerant execution, and the ability to process data streams from multiple sources in a single DSP job. Often enough though, data streams need to be enriched with extra information for correct processing, which introduces additional dependencies and potential bottlenecks. In this paper, we present an in-depth evaluation of data enrichment methods for DSP systems and identify the different use cases for stream processing in modern systems. Using a representative DSP system and conducting the evaluation in a realistic cloud environment, we found that outsourcing enrichment data to the DSP system can improve performance for specific use cases. However, this increased resource consumption highlights the need for stream processing solutions specifically designed for the performance-intensive workloads of cloud-based applications.
Robust and efficient solvers for coupled-adjoint linear systems are crucial to successful aerostructural optimization. Monolithic and partitioned strategies can be applied. The monolithic approach is expected to offer better robustness and efficiency for strong fluid-structure interactions. However, it requires a high implementation cost and convergence may depend on appropriate scaling and initialization strategies. On the other hand, the modularity of the partitioned method enables a straightforward implementation while its convergence may require relaxation. In addition, a partitioned solver leads to a higher number of iterations to get the same level of convergence as the monolithic one. The objective of this paper is to accelerate the fluid-structure coupled-adjoint partitioned solver by considering techniques borrowed from approximate invariant subspace recycling strategies adapted to sequences of linear systems with varying right-hand sides. Indeed, in a partitioned framework, the structural source term attached to the fluid block of equations affects the right-hand side with the nice property of quickly converging to a constant value. We also consider deflation of approximate eigenvectors in conjunction with advanced inner-outer Krylov solvers for the fluid block equations. We demonstrate the benefit of these techniques by computing the coupled derivatives of an aeroelastic configuration of the ONERA-M6 fixed wing in transonic flow. For this exercise the fluid grid was coupled to a structural model specifically designed to exhibit a high flexibility. All computations are performed using RANS flow modeling and a fully linearized one-equation Spalart-Allmaras turbulence model. Numerical simulations show up to 39% reduction in matrix-vector products for GCRO-DR and up to 19% for the nested FGCRO-DR solver.
Classical simulations are essential for the development of quantum computing, and their exponential scaling can easily fill any modern supercomputer. In this paper we consider the performance and energy consumption of large Quantum Fourier Transform (QFT) simulations run on ARCHER2, the UK's National Supercomputing Service, with QuEST toolkit. We take into account CPU clock frequency and node memory size, and use cache-blocking to rearrange the circuit, which minimises communications. We find that using 2.00GHz instead of 2.25GHz can save as much as 25% of energy at 5% increase in runtime. Higher node memory also has the potential to be more efficient, and cost the user fewer CUs, but at higher runtime penalty. Finally, we present a cache-blocking QFT circuit, which halves the required communication. All our optimisations combined result in 40% faster simulations and 35% energy savings in 44 qubit simulations on 4,096 ARCHER2 nodes.
The machine learning modeling process conventionally culminates in selecting a single model that maximizes a selected performance metric. However, this approach leads to abandoning a more profound analysis of slightly inferior models. Particularly in medical and healthcare studies, where the objective extends beyond predictions to valuable insight generation, relying solely on a single model can result in misleading or incomplete conclusions. This problem is particularly pertinent when dealing with a set of models known as $\textit{Rashomon set}$, with performance close to maximum one. Such a set can be numerous and may contain models describing the data in a different way, which calls for comprehensive analysis. This paper introduces a novel process to explore models in the Rashomon set, extending the conventional modeling approach. We propose the $\texttt{Rashomon_DETECT}$ algorithm to detect models with different behavior. It is based on recent developments in the eXplainable Artificial Intelligence (XAI) field. To quantify differences in variable effects among models, we introduce the Profile Disparity Index (PDI) based on measures from functional data analysis. To illustrate the effectiveness of our approach, we showcase its application in predicting survival among hemophagocytic lymphohistiocytosis (HLH) patients - a foundational case study. Additionally, we benchmark our approach on other medical data sets, demonstrating its versatility and utility in various contexts. If differently behaving models are detected in the Rashomon set, their combined analysis leads to more trustworthy conclusions, which is of vital importance for high-stakes applications such as medical applications.
Object detection is a crucial component of autonomous driving, and many detection applications have been developed to address this task. These applications often rely on backbone architectures, which extract representation features from inputs to perform the object detection task. The quality of the features extracted by the backbone architecture can have a significant impact on the overall detection performance. Many researchers have focused on developing new and improved backbone architectures to enhance the efficiency and accuracy of object detection applications. While these backbone architectures have shown state-of-the-art performance on generic object detection datasets like MS-COCO and PASCAL-VOC, evaluating their performance under an autonomous driving environment has not been previously explored. To address this, our study evaluates three well-known autonomous vehicle datasets, namely KITTI, NuScenes, and BDD, to compare the performance of different backbone architectures on object detection tasks.
Traditional approaches for manipulation planning rely on an explicit geometric model of the environment to formulate a given task as an optimization problem. However, inferring an accurate model from raw sensor input is a hard problem in itself, in particular for articulated objects (e.g., closets, drawers). In this paper, we propose a Neural Field Representation (NFR) of articulated objects that enables manipulation planning directly from images. Specifically, after taking a few pictures of a new articulated object, we can forward simulate its possible movements, and, therefore, use this neural model directly for planning with trajectory optimization. Additionally, this representation can be used for shape reconstruction, semantic segmentation and image rendering, which provides a strong supervision signal during training and generalization. We show that our model, which was trained only on synthetic images, is able to extract a meaningful representation for unseen objects of the same class, both in simulation and with real images. Furthermore, we demonstrate that the representation enables robotic manipulation of an articulated object in the real world directly from images.
Data races are a notorious problem in parallel programming. There has been great research interest in type systems that statically prevent data races. Despite the progress in the safety and usability of these systems, lots of existing approaches enforce strict anti-aliasing principles to prevent data races. The adoption of them is often intrusive, in the sense that it invalidates common programming patterns and requires paradigm shifts. We propose Capture Separation Calculus (System CSC), a calculus based on Capture Calculus (System CC<:box), that achieves static data race freedom while being non-intrusive. It allows aliasing in general to permit common programming patterns, but tracks aliasing and controls them when that is necessary to prevent data races. We study the formal properties of System CSC by establishing its type safety and data race freedom. Notably, we establish the data race freedom property by proving the confluence of its reduction semantics. To validate the usability of the calculus, we implement it as an extension to the Scala 3 compiler, and use it to type-check the examples in the paper.
To plan the trajectories of a large and heterogeneous swarm, sequential or synchronous distributed methods usually become intractable, due to the lack of global connectivity and clock synchronization, Moreover, the existing asynchronously distributed schemes usually require recheck-like mechanisms instead of inherently considering the other' moving tendency. To this end, we propose a novel asynchronous protocol to allocate the agents' derivable space in a distributed way, by which each agent can replan trajectory depending on its own timetable. Properties such as collision avoidance and recursive feasibility are theoretically shown and a lower bound of protocol updating is provided. Comprehensive simulations and comparisons with five state-of-the-art methods validate the effectiveness of our method and illustrate the improvement in both the completion time and the moving distance. Finally, hardware experiments are carried out, where 8 heterogeneous unmanned ground vehicles with onboard computation navigate in cluttered scenarios at a high agility.
Fairness problems in recommender systems often have a complexity in practice that is not adequately captured in simplified research formulations. A social choice formulation of the fairness problem, operating within a multi-agent architecture of fairness concerns, offers a flexible and multi-aspect alternative to fairness-aware recommendation approaches. Leveraging social choice allows for increased generality and the possibility of tapping into well-studied social choice algorithms for resolving the tension between multiple, competing fairness concerns. This paper explores a range of options for choice mechanisms in multi-aspect fairness applications using both real and synthetic data and shows that different classes of choice and allocation mechanisms yield different but consistent fairness / accuracy tradeoffs. We also show that a multi-agent formulation offers flexibility in adapting to user population dynamics.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.